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ABSTRACT

Title of Dissertation: An Experimental Investigation of

Computer Program Development Approaches

and Computer Programming Metrics

Robert William Reiter, Jr., Doctor of Philosophy, 1979

Dissertation directed by: Dr. Victor R. Basili

Associate Professor

Department of Computer Science

There is a need in the emerging field of software engineering

for empirical study of software development approaches and software

metrics. An experiment has been conducted to compare three

programming environments: individual programming under an ad hoc

approach, team programming under an ad hoc approach, and team

programming under a disciplined methodology. This disciplined

methodology integrates the use of top-down design, process design

language, structured programming, code reading, and chief program-

mer team organization. Data was obtained for a large number of

automatable software metrics characterizing the software development

process and the developed software product. The results reveal

several statistically significant differences among the programming

environments on the basis of the metrics. These results are

interpreted as demonstrating the advantages of disciplined team

programming in reducing software development costs relative to ad

hoc approaches and improving software product quality relative to

undisciplined team programming. A~c o o
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CHAPTER I

n the evolution of a systematic body of knowLedte,

there are ceneraILy three phases of validation. The first

phase is the Logical aeveLopment of the theory based on a

set of sound principles. This is followed by the

3aplication of the theory and the gathering of evidence that

the tneory is applicable in practice. This usually involves

so-ie qualitative assessment in the form of case studies.

The final phase is the elpirical ano experimental analysis

of the applied theory in order to further unJerstand its

effects and better Oemonstrate its advantages in a

cotrolLed manner. This usually requires quantitative

measurement of the relevant phenomena.

.uch has been written about methodologies for

develooing computer softdare [Wirth 71; Dahl, Dijkstra

Hoare 72; Jackson 75; Myers 75; Linger, Mills v Witt 79).

Most of these methodologies are based on sound Logical

principles. Case studies have been conoucted to demonstrate

their effectiveness (Baker 75; 3asiLi & Turner 75). Their

a option within production ("real-world") environments has

generally ben successful, having practiced adaptations of

these methodologies, software designers and programmers have

asserteu that they got the job done fastert -ade fewer

errors, or produced a better product. Onfortunately, solid

quantitative evidence that comparatively assesses any

particular methodology is scarce [Shneiderman et al. 77;

"yers 76]. This is due oartialty to the cost and

imoracticality of a valiI experimental setup within a

oroauct ion environment.

Thus the question remains, are measurable benefits

derived from proarammin3 methodologies, with respect to

1l



CHAPTER I

-itner the software development Process or the developeo
software Prodluct Even if the benefits are real, it is not

clear that they can be quantified and effectively monitored.

0 ft.are development is still too artistic, in the aesthetic

or spontaneous sense. In order to understand it more fully,

maiaoe it more effectively, and adapt it to particular

3polications or situations, software development must become

more scientific, in the engineering and calculateo sense.

vore empirical study, data collection, and experimental

-4nalysis re required to achieve this goal.

This dissertation strives to contribute to software

enlineering research in this vital thiri Phase of

validation. The dissertation reports on an original

research project dealing with three "dimensions" of software

enq ineering:

Software development approaches, i.e., programming
nethodologies and environments for developing software;

Software metrics, i.e., quantifiable aspects of

or,)Lrafing and measurements of software characteristics;
-

Empipical/experimentat study, i.e., the collection and

,tistir-4l ,naiysis of empirical data about software

!henomena inrl, dinq controlled psychological

exoerimentation.

The immediate godis of the project were

(a) to investigate the effect of certain programming

methodoloqies ano environments upon software

aevelopment phenomena,

(o) to investigate the behavior of certain quantifiable

programming aspects and software measurements under

'jifferent approaches to software development, anu

(c) to devise and apply an investigative methodology,

founded on established crinciples of expcerimental

2



CHAPTEP I

research, but tailored for application to software

eniineering.

The oroject employed the investigative methodology to

conouct and analyze a controlled experiment with soft.are

development approaches as independent vdriables and software

metrics as dependent variables. In this way, both the

effect of the software aeveLopment approaches and the

behavior of the software metrics were investigated

In regara to software development approaches, the

croject focused on three distinct approaches, or programming

environments: single programmers using an ad hoc approach,

urDramminj teams using 3n ad hoc approacht and programming

teams using a disciplined methodology. These approacnes may

be cnaracterized according to two human-factors issues: the

size of the orogramming "team" deployed and the degree of

methodological discipline employed.

in terms of team size, individual programmers working

aIL:ne were compared to teams of three programmers worKing

tj .ether. In terms of methodological discipline, an ad hoc

.0oroach allowing programmers to develop software without

externally imposed methodological constraints was comparea

to a aisciolineo methodology obliging programmers to fotLow

certain modern programming practices and procedures. This

disciplined methodology consisted of an integrated set of

software development techniques and team organizations

including top-down design, process Cesign language,

structured programming, code reading, and chief programmer

tea1nS.

It snoula be noted that the terms 'methooology' and

,etnodoloyicalV (in reference to software development) are

uspo to connote an intejrated set of development techniques
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as .ell as team organizations, rather tnan a particular

technique or organization in isolation. Part of the

philosophy behind the project is the belief that. while

i rticuLar techniques or organizations may generate marginal

"e-efits individually, only a comprehensive ensemble can

ensure significant gains in software aevelopment

Pr3ouctivity and reliability.

in relard to software metrics, the project focused on

tte direct quantification of software development Dhenomena

Ji3 a host of nearly two hundred programming aspects ano

"teasurements. Attention was consciously restricted to

*,etrics exhibiting certain desirable characteristics; all of

tne software metrics examinea in the study are quantitative

(on it least an interval scale [Stevens 46)), objective

(free from inaccuracy due to human subjectivity),

unobtrusive (to those developing the software), and

autonatable (not dependent on human agency for computation).

This large set of programming aspects may be

C.Jcl timrizad on tne oasis of other criteria. Some of the

.::ects pertain to the software development Qro Iess; others,

c Lhe developed sottware po2dut. For example, the number

ct times that source code mooules are compiled during the

development period is a process measure, while the number of

IF statements in the deLivered program source code is a

craduct measure. Some of the aspects are rudimrnentarX, in

that they pertain to very si.mple surface features or lack

theoretical models to motivate intuitive appeal; others are

Ptc9ofaIive, in that they aim at more complicated underlying

features or possess provocative theoretical models. For

examole, the measurements mentioned above are both

rudimentary, while the program changes metric [Dunsmore &

cnnon 77) and the cyclomatic complexity metric [McCaoe 76)

are elaborative.

4



CHAPTEP I

in regard to emoirical/experimental study, the project

coitbined both emcirical data collection and controlleo

Psychological experiment3tion in a Laboratory-like setting.

The project involved extensive observation of forty-

ive programmers developing working software systems,

avera3ing twelve hundred Lines of code each, from scratch

lurin, a five week period. These programmers were divided

into three disjoint groups of "teams," each following one of

the three software development approaches mentioned above.

Vultiple raplications of a specific software oevelopment

task .ere cerformed indeoenuently and concurrently within

each group unuer conditions as otherwise identical as

coss ic I e.

In addition to some subjective qualitative observation

via Questionnaires, interviews, etc., objective quantitative

coserv3tion was achieved by automatically and unobtrusively

monitoring the computer activites of the programming

"ta'dS." For each replication, successive versions of the

softare oeing developed by that "team" were captured in an

historical data bank that recorcied details of the

levelocment process and oroouct. Raw scores for the

scft.are metrics mentioned above were extracted from the

Jata cank and summa.-ized via simple descriptive statistics.

S ecifically, the mean values and standard deviations

ocserved within each group on the various quantifiable

orP;rdmminV aspects constitute the i-emediate results of the

Droject as an emoirical data cotlection effort.

The project followed a rreptannd experimental oesign in

which extraneous factors were held .onstant wherever

possiole, to insure that differences in the software metrics

would be attributable to the aifferent software development

aporoaches. The metrics' raw scores were analyzed using
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noparametric inferential statistics to obtain an objective

conclusion for each measureo aspect. As precise statements

.of the statistically significant differences observed among

zhe three programming environments on the basis of the

-.easureu aspects, these objective conclusions constitute the

immiediate results of the project as a controlled experiment.

"-y testing for differences in either the location (expected

value) or the di1Qersion (variability) of the software

"etrics, the experiment adoressed both the expectancy and

-)reaictability of software development phenomena.

The experiment combined elements of both confirmatory

'=i exoloratory data analysis. Some so-called o2Ej.rMtIDr Z

"r~rammin.3 aspects had been earmarked as promising

indicators of important software characteristics in aovance

-f conducting the exoerivient. Hypotheses had been

'Sormulated, on the oasis of the programming environments'

,,.scected effects, regarding the expected objective

-onctusions for these confirmatory aspects. The project
r. cluoed other so-called exp2tga!t2rx programming aspects in

',r-er tO ir.A.stiqate the software development process and

.. . - m ore thnrouf hly.

The project ,as concerned with investigating an entire

rot.ere oevelop'nent project of nontrivial size in a Quasi-

-eatistic setting. The experiment was conducted within an

,c3upfmic environment in a laboratory or proving-grouna

4ashion so that an adequate experimental design could be

Ach.evea ohile simulating a production environment. In this

wdy. the project reached a reasonable compromise between

"toy" experiments, which facilitate etaoorate experimental

desi,.ns but often suffer from artificiality, and

production" experiments, which offer industrial realism but

inCrr orohibitively high costs.
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The project's oasic premise was that distinctions among

these programming environments exist both in the process and

in tne product. With respect to the ueveLopea software

orZcuct, the oisciolined teac should approximate the

individual programnmer or at Least Lie somewhere between the

individual programmer and the ad hoc team, with regar to

oroauct characteristics (such as number of decisions coded

3nd global data accessibility). This is because the

disciplined methodoLogy should help the team act as a

mentaLLy cohesive unit during the design, coding, and

testing phases. .ith respect to the software development

orocess, the uiscipLined team should have advantages over

both indivicuats and ad hoc teams, displaying superior

oerformance on cost-reLated factors such as computer usage

and number of errors made. This is because of the

discipline itself and because of the ability to use team

menuers as resources for vaLidation.

The study's findings revealed several programming

ch3racteristics for which statisticalL, significant

differences do exist among the groups. The disciplined

te3ms used fewer computer runs and apparently made fewer

errors curing software deveLopment than either the

individual programmers or the ad hoc teams. The individual

programmers and the disciplined teams both produced software

with essentially the same nuMoer of decision statements, out

soltware produced by the ad hoc teams contained greater

numoers of decision statements* For no characteristic was

it concluded that the disciplined methodology impairea the

effectiveness of a programminy team or diminished the

au3Lity of the software orocuct.

The remainder of this oissertation is a comprehensive

reuort on the software engineering research project

introouced above. Chapter iI reviews appropriate background

7



CHAPTEP I

and retdted research tor' published literature. Chapter III

recounts specific details of the experiment itself. Chapter

V riefly describes all of the orogramming aspects and

neasurements, while Chapter V discusses the elaborative ones

in oepth. Chapter VlI depicts the investigative methodology

useJ to plan, execute, and analyze the experiment. Chapters

VII and VIII present the experiment's results, segregated

into objective findings and interpretative discussion,

respectively. Chacter IX summarizes the completed project,

"rqws generaL conclusions regarding its contribution to

software engineering, and mentions possible directions for

continued research in this area.

VI



CHAPTER II

This chapter reviews the general background for this

research project and surveys relateo work published in the

open Literature. For each of the three "dimensions" of

softwiare engineering outlined in Chapter I, specific

instances of research in that area will be mentioned and

loosely characterized, in order to show appropriate

similarities and constrasts with this work. As a catalog of

reLated research, the chapter is intended to be merely

reoresentative, not exhaustive.

There has been considerable concern regarding

orogramming methodologies over the past decade since the

advent of structured programming and the dawning of software

cost consciousness. Software "practitioners" (i.e.,

programmers, designers, systems analys t s, and managers) have

scght oetter ways to channel their energies toward

proJjcing cost-effective, reliable software. ALthougn a

braaj spectrum of concerns--spanning all phases of the

softdare life-cycle and covering the full range of system

size ana performance constraint--could be considered here,

attention has been restricted to methodology for

rogrdmming-in-the-smal1*: designing, implemertinG, and

testing computer programs to solve problems small enough to

be well-understood by a suitably trained individual. In

other worost the focus is on approaches for the kind of

software development that typical programmers/analysts in

tyoical software shops are accustomed to doing.

* 4s used here (and below), the meanings.of the terms
;.roramming-in-the-small' and "provramming-in-the-large'

are clear from the context, but they differ slightly from
the Teanings popularized by Dr. H.D. MiLLS.

9



CHAPTER It

A numher of good ideas on how to develop software,

covering techniques for how to proceed as weLt as

or dnizations for managing people and communicating

inform'tion, have been (or are being) devised, demonstrated,

cerfected, anc accepted into everday practice. Popular

exam;les include the following:

structured orogramming [Dahl, Dijkstra Hoare 7Z;

r'itLs 72; 93asiti & Baker 77; Linger, Mills a witt

79),

stepwise refinement [irth 713,

chief programmer teams (Baker 72; 8aker 75; arooKs 75),

process design language (DL) [Linger, vitts & Witt

793,

top-down design,

funct ional expansion,

oesign/code reading and walk-throughs [Fagan 76),

oata aostractionlencapsulation and information hiding,

iterative enhancement EBasiLi & Turner 75; Turner 76),

the Michael Jackson method [Jackson 75; Hughes 79J, and

composite design (yers 75].

These approaches and their highly touted benefits have

een the subject o' nuch written promotion and verbal

discussion. Indeed, several can boast of mathematical

foundations or format explication to support their

underlying principles or mechanisms; for others, there are

extensive tutorials on how to apply them in oractical

situations; and some have been embodied in programminj

languages or packaged into automated tools. AtL of this

attention, plus the favorable experiences of software

cractitioners, seems to indicate that these software

devetooment approaches do succeed in improving the

efficiency of the development Process or the Quality of the

devetoped product to some degree.
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out there is Little empirical evidence to confirm the

aivantajes of these approaches or measure their benefits.

In several instances, case studies nave been performeu,

often in a pioneering spirit, to demonstrate particular

aparoaches; these case studies have usually involved

qu3litative assessment, with only limited or uncontrolled

forms of quantitative assessment. Comparative assessment of

software development approaches is even rarer: only a few

controlled experiments [Shneiderman et al. 77; Myers 78)

have oeen conducted, and they have generally focused on the

use of particular techniques in isolation. The difficulty

of investigating the effects of software development

aporoaches stems precisely from the fact that they pertain

to tne Least understood and most expensive elements in

software engineering: human beings.

So:tir& Metrics

There has ueen considerable interest in software

metrics over the past half decade in response to a growing

reaLliation of how "invisible," imponderable, and I
urcontrollaole software can be. Software "scientists" have

teen teeking ways to measure software phenomena. 9roadly

interpretea, tneir efforts may be characterized as

attempting to Quantify process efficiency and product

au3llty.* The software measurement domain extends from the

curicrete details of a program, including its fine structure

anJ the resource expenditure required to produce it, to its

aostract characteristics: reliabilityt cost-effectiveness,

t his concept of product quality is meant to include
in:i.intaneous, as welt as evoLutionary, consioerations. The
former considerations pertain to both static (at compile
,iis) and dynamic (at execution time) features of a program,
as it exists at a given point along its life-cycle. The
6, tpr consideratigns pertain to issues of software

maintenance and software management throughout the life-
,r I.. The suftware measures in this dissertation adaress
product quality only in its instantaneous, static sense.

11



CHAPTER II

corplexity, modutarity, comprehensibity, modifiability, etc.

Because measurement is essential to most forms of

engineering, software metrics rightfully deserve a central

clacp within the emerging discipline of soft.dare

engineering. As in other technologies, the underlyiny

assunption is that approoriate measurement is the key to

Pffective control. It has Peen demonstrated [Gilb 77] that

the general concept of software measurement can be appliea

to a variety of programming issues: many interesting

suglestions were made regarding how and why to measure

software. But the metrics discussed by Gilb are vaguely

defined and superficial. The problem is that meaningful

Teisurement of software is extremely difficult, because of

software's intricate structure of concrete detail and

because of the tenuous relationship between its concrete

details and abstract characteristics. An additional problem

is the lack of well-understood and commonly accepted

terminology to describe the software phenomena to be

measured.

However, a numoer of well-defined and fairly credible

software metrics have been proposed and evaluated, usually

in conjunction with a motivating model or some intuitional

underpinnings. The program changes metric [Dunsmore a.

rainon 77; Dunsmore 761 extracts an error coant

algorithmicalLy from the textual revisions made to source

code during proyram development. The cyclomatic complexity

metric [vcCabe 76] counts the number of "basic" control-flow

paths in a program. The data bindings metric [Stevens,

-yers & Constantine 74; 3asili & Turner 75; Turner 76]

coints commmunication paths between code segments via data

variatles. The various metrics from software science theory

r .,lstead 771--program length, program volume, language

Level, effort, etc.--provide a unified syste- of



CHAPTER II

-e3surements for the size of a program, the amount of

information it contains, the level of abstraction it

exoressesv the amount of mental effort required to produce

or comorehend it, etc. The error-day metric [mills 76) is

an inoex of how early errors are detected and corrected

Jurin, software development. The span metric CElshoff 760]

is an inoex of the extent to dhich a program's data

variaules remain "live" (i.e., continue to affect control

flow and data value determination).

Each metric mentioneo above has been examined

emoiricalLy to one degree or another; but few software

metrics have oeen investigated in controlled experiments,

anJ there is Little research comparing metrics or examining

their interrelationships empirically. Further elaboration

and discussion of individual software metrics is deferred to

Chapters IV and V since many were examined in this reseach

oroject.

First-hand observation of software phenomena in the

",il'i," so to speakt has Long been regarded as a unique

source of information and the ultimate form of validation.

Ever since Knuth rummaged through wastebaskets at computer

centers for discarded listings of Fortran programs [Knuth

713, software "technicians" have been interested in watching

softiware be developed, to see how the Latest intuitive

opinions or theoretical modeLs fare against reality.

Ideally, it is useful to distinguish between data collection

efforts (with descriptive statistical analyses) and

controlled experimentation efforts (with inferential

statistical analyses); but, in practice, elements of both

are sometimes combined within the same empirical study.

1.3

LT
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ueneralty streaking, the purpose of data collection

effurts has been to examine the behavior of software metrics

anj -odets under realistic conditions. A number of data

collection efforts have Deen aimed at progamming-in-the-

targe,* focusing on models of gross behavior (i.e., cost,

oroauctivity, resource estimation) during large- to medium-

sc3le software development. At IBM [walston & Felix 77)

ata was collected via project reporting forms in order to

Te3sure productivity on oroduction software developments.

At NASA/Goidard [3asili et aL. 77J data is being collected

vi3 information forms in order to evaluate cost or resource

sstimation models and to study software error phenomena.

Other data collection efforts, focusing on small- to

,nelium-scale sof tware development, have been aimed at

ouantitatively characterizing software's fine structure. In

stidies at G* [Elshoff 76b; ELshoff 76a], a large set of

commercial PL/1 programs was collected and measured

accoraing to a host of quantifiable programming aspects and

,,oftware metrics, including the span metric and the software

-cience metrics.

Generally speaking, the purpose of controlled

exoerimentation efforts has been to evaluate the effects of

rprogramming language features, human factors issues, and

:rro~ramming methodologies upon software phenomena and

aostract characteristics. Usually, the language features

exoeriments are done from a computer scientist's viewpoint,

while the human factors experiments are done from a

csychologist's viewpoint. However, because of areas of

natural overlap between these two concernst some

exoreriments fall into both categories. Together they

coRprise the bulk of controlled experimentation in software

* See earlier footnote.

14
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engineering.

There are several well-known examples of controlled

exDerinentation on programming language features. vieeissman

[weissman 74a; weissman 74b] conducted experiments on how

prorramming features affect the psychological complexity of

soft.ware; the -eatures included commenting, indentation,

mnemonic variable nam-eis, anu control structures. Gannon

[Gannon 75; Gannon & Horning 753 conducted an experiment on

how programming language features affect software

reliaoility and the presence/persistence of errors; the

features included statement vs. expression orientation, data

variaole scooe conventions, and expression evaluation order.

Later, Gannon [Gannon 771 ran experiments to examine how

data typing conventions affect software reliability. Using

the same empirical data, Dunsmore [Dunsmore 9 Gannon 77;

Dunsmore 7.9) examined how programming "complexity" is

affected by programmer-controllable variations in

orogramming features. "Complexity" was measured

algorithmically by the program changes metric; the features

included statement nesting oepth, frequency of data

references, and data communication mechanism preference.

There are several well-known examples of controlled

exoerimentation on human factors issues. Several

Pxoeriments [Sime, Green & Guest 73; Green 77) have been

conducted on the comorehensibility of different mechanisms

for imolementin4 conditional oranching. Several experiments

[She pard et at. 79J have been conducted on the effect of

moJern coding practices, such as structured coding, mnemonic

variaule names, and style of commenting upon the ease of

Performing comprehensiont modification, and debugging tasks.

Finally, there are a fe6 well-known examples of

controlled experimuentation on programming methodologies.

15
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Several experiments were conducted LShneiderrman et at. 77J

to evailuate the utility of detailed flowcharting (as a

Iesign tool and documentation aid) in program composition,

coiprehensiont oeougging, and modification tasks; novice

orogamming students were employed as subjects, with short

(i.e., less than 150 Lines) Fortran programs as test

materials. Some experiments were also conducted [4yers 76]

to evaluate the utility of code reading and walkthrou~hs in

deougging tasks; experienced professional orogrammers were

evoloyed as subjects, with a short PL/1 program as test

material. To date, however, controlled experimentation on

programmina methodologies has been limited in scope.

vxoerimentaL studies have not involved programming

activities spanning multiple phases of the software life-

cycle and requiring the natural integration of multiple

crogramming tasks. Nor have experimental studies useo

nontrivial test materials requiring sustained effort Lasting

severaL weeks and involving several hunored lines of code.

16
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This chapter outlines the surroundings in which the

experiment was conducted, the experimental design that was

emalcyea, the programming methodologies that were compared,

the Jata coLtection and reduction that was performed, and

the rrogramming aspects that were measured.

L 2r rugn ijs

',overdl circumstances surrounding the experiment

D -'- ,tute significantly to the context in which its results

7,ust Le appraised. Tnes - 4nclude the setting in which the,

experiment was conducted, the people who participated as

subjects, the software development project that served as

the experimental task, the computer programming language in

which the software was written, and the computer system and

access mode that were used during development.

The experiment was conducted during the Spring 1976

setester, January through Mayt within regular academic

coirses given by the Department of Computer Science on the

CotLete Park campus of the university of Maryland. Two

cotparabte advanced elective courses were utilizeo, edch

with the same academic prerequisites. The experimental task

anJ treatments were built into the course material ana

assijnments. Everyone in the two classes participated in

the experiment; they cooperated willingly and were aware of

being monitored, out had no knowledge of what was being

observed or why.

rhe participants were advanced undergraduate and

orrduate students in the Department of Computer Science. On

tne wnole, they were reasonably competent computer

17
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rD rammers, atL having completed at least four semesters of

programming course work and some having as much ds three

years' professional programming experience in government or

industry. Generally speaking, they were familiar with the

implementation Language and the host computer system, but

inexoerienced in team programming and the disciplined

net hodo logy.

The programming application was a simple compiler,

involving string processing and translation (via scanning,

narsing, code generation, ano symbol table management) from

an ALgo-like Language to zero-address code for a

hyoothetical stack machine. The total task was to design,

ivolement, test, and debug the complete computer software

system from given specifications. The scope of the project

excluded both extensive erro- handling and user

documentation. The project was of modest but nonnegtigibLe

difficulty, requiring between one and two man-months of

effort. The size of the resulting systems averaged over

12)0 Lines of high-level Language source code. ALL facets

of the project itself were fixed and uniform across all

development "teams." Given the same specifications,

conputer resource allocation, catenoar time allotment, host

machine, implementation language, debugging tools, etc.,

each "team" worked independently to build its own system.

The deLivered systems each ran (i.e., they worked) anu

passea an independent acceptance test.

The implementation language was the high-Level,

structured-programming language SIMPL-T [BasiLi g Turner

'6). This language was designed and developed at the

University of Maryland where it is taught and used

extensively in regular Department of Computer Science

coirses. SIMPL-T contains the following control constructs:

se:uence, ifthen, ifthenelse, whiLedo, case, exit from loop,

,' a
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and return from routine (but no goto). SlmPL-T allows

essentially three levels of data declaration scope (i.e.,

local to an individual routine, global across the several

roitines of an individual module, or entry-global across the

routines of several modules), but routines may not be

nesteu. Adhering to a philosoohy of "strong typing," the

la ua'e supports integer, charactert and string oata types

and single dimension array data structures. It provices the

rrogrammer with automatic recursion and PL/1-like string-

orocessing capabilities. (Additional details regarding the

'71PL-T orogramming language are interspersedl among the

exolanatory notes in Chapter IV.)

The host computer system was the campus-wide computing

facility, a Univac 1100 machine with the usual Exec 8

operating system. This system supports, in its fashion,

both patch access (via punch cards) and interactive time-

sh3ring* access (via TTY or CRT terminals). The

participants were well acquainted with the system and

accustomed to either access mode. During the experiment,

the participants were allowed to choose whichever access

moJe they preferred and could switch freely between modes.

Almost everyone consistently preferred the interactive

access mode; only one person--in the Al group (see below),

by the way--usea the batch access mode extensively.

Exoerimental .ie ian

The major elements of an experimentaL design are its

units, treatment factors, treatment factor Levels, observed

variables, local control, and management of extraneous

factors. (Cf. JOstle and Mensing 75, chap. 0 for a general

treatment of these elements..)

* CatLed "demand" in Univac terminology.
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An experimental unit s that object to which a single

treatment is apptied in one replication of the event Known

as the "basic experiment." In this study, the "basic

exoeriment" was the accomplishment of a specific software

development project (see above), ano the experimental unit

was tne software development team (ioe., a small group of

people working together to develop the software). A total

of 19 replications of this "basic experiment," each

performed concurrently and independently by a separate
exoerimentaL unit, were involved in this experiment.

Most experiments are concerned with on one or more

indecendent variables and the behavior of a one or more

deoendent variables as the inaependent variables are

permitted to vary. These independent variables are known as

exoerimental treatment factors. This experiment focused on

the approach used to develop software, as the single
experimental treatment factor.

Experiments usually involve some deliberate variwtion
in the experimental treatment factor(s). Different values

or classifications of the factor(s) are known as the

exoerimentaL treatment factor levels. In this experiment,

three levels were selected for the software development

aporoach factor. Conceived as variations in two human-

factors-in-programming issues, size of oevelopment "team"

and degree of methodological discipline, the exoerimental

treatment factor Levels are denoted by the following

mnemonics:

Al -- individual programmers working alone, following

an ad hoc approach (see below);

AT -- teams of three programmers working together,

following an ad hoc approach (see below); and

DT-- teams of three programmers working together,

following a disciplined methodotogy (see below).

20



CHAPTER III

Durinq an experiment, observations of the dependent

variisle(s) are made for each experimental unit. An

exaeriment's immedidte objective is to ascertain the

relationship between the experimental treatment factor

levels and the experimental observed variables. In this

exoeriment, the observed variables were quantifiable

progr.nming aspects, or netrics (see below), of the software

development process or the developed software product. A

large set of such aspects were considered in the study.

Technically speaking, this amounted to conducting a series

of simultaneous univariate experiments, one for each

programning aspect, all sharing a common experimental design

and all based on the same empirical data sample.

Experimental local control addresses the configuration

by which (a) experimental units are obtained, (b) units are

La3cec into groups, and (c) groups are subjected to

different experimental treatments (i.e., specific

comt inations of experimental treatment factor levels).

Local control is employed in the design of an experiment in

order to increase its statistical efficiency or to improve

the sensitivity/oower of statistical test procedures.

Fxperimental local control usually incorporates some form of

ranoomization--a basic principle of experimental desitn--

since it is necessary for the validity of statistical test

orocedures.

For this experiment, subjects were obtained on the

basis of course enrollment: since the experiment was

emoedded aithin two academic courses, every student enrolled

in those courses automatically participated in the

exoeri-ment. Software development "teams" were formed among

these subjects. In the one course, the students were

allowed to choose between segregating themselves as

individual programmers or combining with two other

21
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ct, ssmates as three-person programming teams. In the other

cujrse9 the students were assigned (by the researcher) into

three-person team's. The two academic courses themselves

provided the variation in methodological discipline. The

atmosphere of the first course was conducive to an ad hoc

aporodch to programming, while the disciplined methodology

was stressed in the second course. In this manner, three

exoerimental treatments (corresponding to the three

exoerimentat treatment factor levels AI, AT, and DT) were

created, and three groups of 6, 6, and 7 units

(respectively) were exposed to them.

There are usually several extraneous factors, other

th3n the ones identified as experimental treatment factors,

that could influence the behavior being observed in an

exoeriment. many experivents (inctudings this one) follow a

reductionist paradigm, which seeks to control for alL

variaotes except a select few, so that the effect of the

inderendent variables upon the oependent variables can be

isolated and measured. in this experiment, a variety of

Drogramming factors which do affect software development

were given conscious consideration as extraneous variables:

- programming application and/or project

- project specifications

- implementation language

- calendar schedule

- avaitaoLe computer resources

- available automated tools

wherever possible, these variables were held constant by

exDlicitly treating all experimental units in the same

manner.

unfortunately, the ideal reductionist paradigm can only

he approximated, because of factors which arm suspected of

stron influence on the behavior of interest, but which

22
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cannot Cue exolicitly controlled within the experimental

desi ;n. In this experiment , there were two such factors:

the personal abi lity/experience of the participants and the

3mount of actual time/effort they (as students with other

cl3sses ano responsibilities) chose to devote to the

roject. However, information from a pretest questionnaire

was used to balance the Dersonal ability/experience of the

oarticipants in the disciplined teams (only), by first

c rtitioning the group DT students into three equal-sized

cate;>.ries (h gn, medium, low) oaseo on their grades in

zrevious computer courses and their extracurricular

progr.-ming experience, and then randomly selecting one

stjoent from each category to form each team.

For t Oe statistical mocel employed to analyze this

exoeriment, it was necessary to assume homogeneity among the

norticipants with respect to personal factors such as

aoility and/or experience, motivation, time and/or effort

devoted to the project, etc. As a reasonable measure of

individual programmer skill levels under the circumstances

of this study, the participants' grades from a particularly

pertinent prerequisite course provioed a post-experimental

co firmation of at least one facet of this assumed

honuloeneity: the distrioution of these grades among the

three experimental groups would have aisplayed the same

degree of homogeneity as was actually ooserved in over 9 out

of 17 ourety random assignments of the participants to the

groups. If anything, in the researcher's opinion, the

participants in group Al seemed to have a slight edge over

those in groups AT and DT with respect to native programming

aoility, while groups Al and AT seemed slightly favored over

croup ST with respect to formal training in the application

3rP a.
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The discipLined methodoLogy imposed on teams in group

')T consisted of an integrated set of state-of-the-art

techniques, including too-down design, process design

tanguaqe (PDL), functional expansion, design and code

re3ding, walk-throughs, and chief programmer team

orjanization. These techniques and organizations were

taight as an integral oart of the course that the subjects

were taking, using [Linger, MiLs & Witt 79), [Basili &

"aker 75], and EBrooks 75] as textbooks. Since the subjects

were novices in the methodology, they executed it to varying

legrees of thoroughness and were not always as successful as

se3soned users of the methodology would be.

The discipLineo methodology prescribed the use of a PDL

+or exoressing the design of the problem solution. The

design was elaborated in a top-down manner, each Level

reoresenting a solution to the problem at a particular Level

ot abstraction and specifying the functions to be expanded

at the next level. The PDL consisted of a fixed set of

structured control and data structures, PLus an open-enoed

desiiner-defined set of operators and operands corresponding

to the Level of the solution and the particular application.

Vesign and code reading involved the critical review of each

team member's POL or code by at least one other member of

the team. walk-throughs representeo a more formalizeo

presentation of an individual's work to the other members of

the team in which the PDL or code was explained step oy

step. Under the chief programmer team organization, the

chief orogrammer defined the top-level solution to the

prooLem in POL, designed and implemented key portions of

cole himself, and assigned subtasks to the other two team

meroerse Each of these orogrammers, in turn, code-read for

the chief programmer, designed or coded their assigneu
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sujcieces, anc performed liorarian activities (i.e.,

entering or revising code stored on-Line, making test runs,

etc*).

Two variants of chief programmer team organization,

lenoted CP and M, were employed. In both cases, one member

of the team (the chief programmer or the manager) was

responsible for designing and refining the top-level

solution to the proolem in PDL, identifying system

corponents to be implemented, and defining their interfaces.

rhe two other team members (the programmers) were each

responsibLe for designing or coding various system

corponents, as assigned by the chief programmer or manager.

In the CP case, the chief programmer maximized his cooing

duties oy implementing the key code himself, and the

programmers performed Librarian activities (i.e., entering

or revising code stored on-line, making test runs, etc.).

In the M case, the manater minimized his coding duties by

acting as Librarian and yielding greater responsibility for

ioementation to the programmers. Although there were

(sipposedly) four CP teams and three M teams in group DT,

this distinction between the CP and M variants of chief

pragrammer team organization is not utilized in the pre.ent

stidy, since it is believed that the impact of their common

*e3tures transcends any impact due to their differences.

• oreover, in actual practice, it was observed that the CP

anJ 11 variants are only identifiable extrema along a

continuum and that the group DT teams all gravitated toward

a romfortable compromise in this respect.

Each individual or team in groups Al or AT was allowed

to develop the software entirett in a manner of his or their

own choosing, which is herein referred to as an ad hoc

ap:roach. No methodology was taught in the course these

suojects were taking. Informal observation by the
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researcher coni rmeo that approaches used by the individuals

and au hoc teams were indeeo Lacking in discipline anu aio

not utilize the key elements of the disciplined methouology

(e.,., an individual working alone cannot practice cooe

reading, and it was evident that the ad hoc teams did not

emotoy a PDL or a formal top-down design).

Due to the Partially exploratory nature of the

ex~eriment in terms of differences to be discovered in the

nroject and orocess, as much information was collecteo as

couli oe done in an efficient and unootrusive manner. A

variety of information sources was used. Individual

Questionnaires revealed the personal background and

programming experience of each participant. Private team

interviews and in-class team reports provided information

regarding individual performance on the project. "Run Logs"

and computer account bilting reports gave a record of the

computer activity during the project. Special module

compilation and program execution processors (invoked on-

line via very slight changes to the regular command

tngualie) created an historical data bank of source code and

test data accumulated throughout the project development.

The data bank provided the principal source of

information analyzea in the current investigation and other

information sources have been utilized only in an auxiliary

manner (if at all). Thus, data collection for the

exneriments themselves was automated on-line, with

essentially no interference to the programmer's normal

catt-rn of actions during computer (terminal) sessions. The

final products were isolated from the data bank and measured

for various syn-tactic and organizational aspects of the

fiiishea oruduct source code. Effort'and cost data were
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also extracted from the data bank. The inputs to the

analysis, in the form of scores for the various programming

asoects, reflect the quantitatively measured character of

the crouuct and the process. Much of the data reduction was

done automatically within a specially instrumented compiler.

Some was done manually (e.g., examining characteristics

across modules). Due to the underlying collection ana

reduction mechanism, which was uniformalty applied to all

exoerimental units, the data used in the analysis has the

characteristics of objectivity, uniformity, and

quantitativeness and is measured on an interval scale of

measurement [Stevens 46]. The raw scores for the measured

programming aspects are summarized in Apppenlix 1.

The dependent variaotes studiee in this experiment are

catleo programming aspects. They represent specific

isaLataute and observable features of programming phenomena.

rurthermore, they are measured in an objective ancd

automatable manner (i.e., they could be extracted or

couputea directly on-line from information readily

ootainabte from operating systems and compilers). For each

programming aspect there exists an associated metric, a

specitic algorithm which ultimately defines that aspect and

by which it is measured.

The programming aspects may be categorized as either

process- or product-related, on the basis of what they

measure. Process aspects represent characteristics of the

development process, in oarticuLart the cost and required

effort as reflected in the number of computer job steps (or

runs) and the amount of textual revision of source cooe

durir development. Product aspects represent

cn3racteristics of the final product that was developed, in
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oarticular, the syntactic content and organization of the

symuoLic source code. Examples of product aspects are

numtber of lines, frequency of particular statement types,

average size of data variables' scope, etc.

The programming aspects may also be categorized as

either rudimentary or eLauorative, on the basis of their

conceptual nature. The rudimentary aspects are conceptually

quite simple, reflecting ordinary surface features of the

crocess or product. For example, the numbers of data

variatles and routines in a program are rudimentary aspects;

tney pertain to the sheer size of the software and are

somewhat uninteresting in themselves. The elaborative

,isoects are conceptually more subtle, reflecting deeper

ch3racteristics of the process or product. For example, the

numper of times Pairs of routines communicate via data

variables (see the data bindings metric below) is an

el3oorative aspect; it pertains to the software's modularity

and is intuitively appealing.

Finally, the programming aspects may be categorized as

either confirmatory or exploratory, on the basis of the

notivation for their inclusion in the study. The

confirmatory aspects had ueen consciously planned in ddvance

of colLecting and extracting the data, oecause intuition

su;gested that they would serve well as quantitative

inJicators of imoortant juatitative characteristics of

sofware development phenomena. It was predicted a priori

that these confirmatory aspects would verify the study's

basic premises regarding the programming environments being

investigated in the experiment. The exploratory aspects

were considered mainly because they could be collectea and

extracted cheaply (even as a natural by-product sometimes)

aLony with the confirmatory aspects. There was little

serious expectation that these exploratory aspects would be
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useful indicators of differences among the groups; but they

were included in the study with the intent of observing as

many aspects as possible on the off chance of discovering

any unexpected tendency or difference. Thus, this study

conoines elements of both confirmatory and exploratory oata

analysis within one common experimental setting [Tukey 69].

The confirmatory programming aspects are identified in the

accompanying taoles by being flagged with asterisks; the

exoloratory rroiramming aspects are unflagged.

it should oe noted that a Large percentage of the

oroduct aspects fall into the rudimentary-exoloratory

category. On the whoLe, these product aspects represent a

fairly extensive taxonomy of the surface features of

software. The idea that important software qualities (e.g.,

"complexity") could be measured by counting Such surface

features has generally been disregarded by some researchers

as too simplistic (e.g., [Mills 73, p. 232)). A resclve to

study these surface features empirically, to see if

soretning might turn up, before rejecting the underlying

idea, was partially responsible for their inclusion in the

study.

The particular programming aspects examined in tnis

investigation are presented in Chapters IV and V. A

covplete list of aspects, together with explanatory notes,

is given in Chapter IV, with definitions for the nontrivial

or unfamiliar metrics. Chapter V contains a in-depth

discussion of the elaborative aspects.

29



CHAPTER IV

This chapter presents all of the programming aspects

examineo in the study. The goal of this chapter, in

conjunction with the next, is to describe each programming

asoect and, where appropriate, to motivate its intuitive

aDoeal as a software metric. 9ecause the brief explanatory

notes within this chapter do not adequately aescribe a

certain subset of the aspects (namely, the elaborative

a.ects)v they are further discussed within the next

(ia3 p t e r.

Table 1 Lists the programming aspects examined in this

investigation. They appear grouped according to

definitionaLLy related categories, with indented qualifying

phrases to specify variants of general aspects. When

referring to an individual aspect, a concatenation of the

major phrase with any qualifying phrases (separated by \

symbols) is used.* For example, the aspect Label

COMPUTER JOB STEPS\qODULE COMPILATION\UNIQUE

refers to a metric involving computer b steps that are

ncIuLe compilations in which the sourc code is unique from

.3Ll other compilea versions.

In oroer to avoid any misunderstanding, a reoundancy

issue must be statea and properly appreciated. Several

instances of duplicate programming aspects exist; that is,

sove Logically unique asoects reappear with another Label,

in oruer to provide alternative views of a given metric or

to round out a group of related aspects. For example, the

FUnCTION CALLS aspect and the STATEMENT TYPE COUNTS\

* Ascect Labels are always written compLeteLy in uppercase
letterst white references to general concepts appear in
LCoerc4se Letters, with initial or defining occurrences
un ier Iined.
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T+ab Le I. P rotram!inS S2.p t S

- Parenth'esized numbers refer to the explanatory notes
in Cha:ter IV. Asterisks mark the confirmatory aspects; t'e
eoLoratory asoects are unmarkeu.

rodimentary process aspects

* ICO PUTER JO STEPS
(2) * I .1MODULE COCMPILATION
C ) * UNIQUE
( ) IDENTICAL

(4) PROGRAM EXECUTION
( 5) MISCELLANEOUS
(6) * ESSENTIAL

(7) AVERAGE UNIQUE COIPILATIONS PER MODULE
(_ ) 'AX. UNIOUE COMPILATIONS F.A.O. MODULE

"%. is an abbreviation for MAAIMUM
F.A.O. is an aubreviat ion for FOR ANY OE

elaborative process aspects

(r)) * I ROGRAM CHANGES

rudimentary product aspects

(1 ) * ImODULE S

(11) * SEGMENTS

(i2) ISE(MENT TYPE COUNTS

(11) 1 FUNCTION
'1, ) PROCEDURE

----------------------------------------------I
(I1 ISEGMIENT TYPE PERCENTAGES

(1) ( FUNCTION
1) PROCEDURE

(13) AVERAGE SEGMENTS PER MODULE

14i~) *LINES

15) * STTEMENTS

(1) STATEMENT TYPE COUNTS
(lo) " Z

(! ) * CASE
(jj) * wI'ILE(:I) * EXIT

(2 ,9) (PROC)CALL
(23,90) NONINTRINSIC( , ) INTrRINSIC

(2'.)(E TURN

(1..).] • ISTA T E M EN T  T Y P E  P E R C E N T A G E S

11 ) " I CASE
'.) * wHILE
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(.:1) EXIT
(*:.) I (PROC)CALL
(_2) INONINTRINSIC
(2;) INTRINSIC
(24) * RETURN

(?5) * AVERAGE STATEMENTS PER SEGMENT

(2o) * AVERAGE STATEMENT NESTING LEVEL

(27) * DECISIONS

(22,99) FUNCTION CALLS
(23,99) NONINTRINSIC
(23, 9) INTRINSIC
(23) TOKENS
(2) AVERAGE TOKENS PER STATEMENT

( ) INVOCATIONS
( 11,9g) FUNCTION( 3, gO NON NTRINS IC
(23,99) NTIN TRINSIC

(23,90) INTRINSIC
(23,) NONINTRINSIC
(23) INTRRINSIC

(30) aVG. INVOCATIONS PER (CALLING) SEGMENT
(11) FUNCTION
(23) NONINTAINSIC
(2) INTRI NSIC
(11) PPOCEDURE
(23) NONINTRINS IC
(23) I NTRI NSIC
(2 99) NONINTRINSIC
(23 INTRINSIC

('1 9Q) AVG. INVOCATIONS PER (CALLED) SEGMENT

(11) PROCEDURE

(32) DATA VARIAOLES

(37) DATA VARIABLE SCOPE COUNTS
(33) GLOPAL
(34) ENTRY
(35) MODIFIED

(35) UNMODI F IED(34) NONENTRY
(35) MODIFIED
(35) UNMODIFIED

(35) MODIFIED'it c UNMOD IFIE0

("3) NONGLOBAL
(33) PADM ETEP
(36) VALUE
(!o) REFERENCE

A33) A LOCAL

(37) DATA VARIABLE SCOPE PERCENTAGES
('3) * GLOBAL
(34) ENTRY
(35) MOD!FIED
(35) UNMODIFIED
(34) NONENTRY
(35) MODIFIED
(35) UNMODIFIED
(15) C DI F I ED
(35) UNMODIFIED
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( . 3) NONGLOBAL
(*5) PARAMETER

(30) VALUE
(30) REFERENCE
(33) LOCAL
(3o) IAVERAGE GLOaAL vARIABLES PER MODULE I
(34,) E TNTRY
(34) NONENTRY
(35) MODIFIED
(35) UNMODIFIED

(7d) jVE-R-A-GEONGLOBAL VARIAaLES PER SEGMENT
(33) PARAMETER
(33) LOCAL

("9) PARA'.ETER PASSAGE TYPE PERCENTAGES
(30) VALUE
(36) REFERENCE
(40) (SEGMENTGLOSAL) ACTUAL USAGE PAIRS
(34) ENTRY

(35) M00IFIED
(3z) UNMODIFIED(3Z) NONENTRY

(35) MODIFIED
(35) UNMODIFIED

(35) NMODIFIED

(4) (SEGMENTGLOBAL) POSSIBLE USAGE PAIRS
(34) ENTRY
( 5) MODIFIED
(35) UNMODIFIED
(34) NONENTRY
( 35) MODIFIED
('5) UNMODIFIED
(35) MODI FIED

5 UNMODIFIED I
I---------- -------------------- --------- I(4C) '(SEGMENT,GLOAL) USAGE PAIR ;EL.PERCENT.9

(34) ENTRY
(7 5) MOD I F IED
(3 5) UNMODIFIED(34) NONENTRY

7( r,) !ACD IF I FD

(35) U . %R0OD I F I(35) H 0OD FI E D
(35) UNMODIFIED I

AVG. is in aobreviation for AVERAGE
REL.PERCENT. is an abbreviation for RELATIVE PERCENTAGE

etaborative product aspects

(44) ICYCLOMATIC COMPLEXITY

(4j) SIMPPRED-NCASF VARIATION
(46) TOTAL
(47) #SEGS :CC>=10

(40) 0.5 QUANTILE POINT VALUE
(4d) ,5 QUANTILE TAIL AVERAGE
(4d) 0 .? QUANTILE POINT VALUE
(4,) I 0.7 QUANTILE TAIL AVERAGE I
(4) C. QUANTILE POINT VALUE
(4*) . * 3.5 QUANTILE TAIL AVERAGE
(46) C .9 QUANTILE POINT VALUE I
(4C) I O. QUANTI LE TAIL AVERAGE
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(4) 1~ SIYPPPED-LUGCASE VARIATION :4:3) TOTAL
(47) ISEGS:CC>=10

(4,-) '.5 QUAN'ILE POINT VALUE
(4,) C.5 QUANTILE TAIL AVERAGE
(4.1 I C.? QUANTILE POINT VALUE I
(4.) 0.7 QUANTILE TAIL AVERAGE
(4-,) I.0 QUANTILE POINT VALUE
(4) 4F QUANTILE TAIL AVERAGE
(4:) 0,, QUANTILE POINT VALUE
(4.) 6,,9 QUANTILE TAIL AVERAGE

(45) COMPPRED-NCASE VARIATION
(4o) TOTAL I
(47) ,SFGS:CC>=1,
(4;) 0.5 QUANTILE POINT VALUE
(4:) 0.! QUANTILE TAIL AVERAGE
(4c) 0.7 QUANTILE POINT VALUE
(4.-) 0.7 QUANTILE TAIL AVERAGE I
( ..) 0.q QUANTILE POINT VALUE I
-. -°; C . QUANTILE TAIL AVERAGE

(4.) .9 QUANTILE POINT VALUE I
(4. 0..9 QUANTILE TAIL AVERAGE

(45) COMPPCED-LOGCASE VARIATION
(4) TOTAL
(47) #ScGS :CC>=1 -J
(4 -2) 0. QUA1NTILE POINT VALUE
(4.) 0.5 QUANTILE TAIL AVERAGE I
( 4) { 0.7 QUANTILE POINT VALUE
(4o) . QUANTILE TAIL AVERAGE I
(4 ,) 1 .3 QUANTILE POINT VALUE
(43) C.S QUANTILE TAIL AVERAGE
(4,,) 0. QUANTILE POINT VALUE
(4.) 0.9 QUANTILE TAIL AVERAGE

(41) (SEGMENT,GLOJALSEGMENT) DATA BINDINGS :1
(42) ACTUAL I
(43) SU! FUNCTIONAL
(4-.3) I INDEPENDENT
(42) POSSI9LE
(42) RELATIVE PERCENTAGE

(4i) SOFTWARE SCIENCE aUANTITIES
( 7') I VOCABULARY
(50) LENGTH
(5) ESTIMATED LFNGT
(S) /DIFFERENCE(N •
(5 ) VOLUME
1% 99) INTELLIGENCE CONTENT
(C(" ESTIMATED BUGS

(51) 1ST CALCULATICN METHOD
(% ) PROGRAM LEVEL
(S 3) DIFFICULTY
(50, 99) POTENTIAL VOLUME
0( * U-) LANGUAGE LEVEL
(s3) EFFORT I
(5j) ES T IMATED TIME

(c1) 2ND CALCULATION METHOD
(5,) PROGRAM LEVEL
(50) DIFFICULTY
(50) POTENTIAL VOLUME
(in) %DI FFEtENCE(VI)
(5u) LANGUAGE LEVEL
( { ) IEFFORT

( J) IESTIMATED TIME
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(PQOC)CALL aspect are each LaoeLpd and categorized from the

viewpoint of implementation Language construct frequencies.

nut the same metrics can also be considered from the

viewpoint of segment invocation frequencies, warranting the

inclusion of the two Ouplicate aspects INVOCATIONS\FUrvCTIONS

ani INVOCATIONS\PROCEDURES as variants of the general

I.%OCATIONS aspect. Among the 197 programming aspects

tisteu in Table 1t there are 8 pairs of duplicate aspects

(iientified in note 99 below), leaving 189 nonredundant

aspects examined in the study. Ry definitiont the data

scores obtained for any Pair of duplicate aspects will be

identical, and thus the same statistical conclusions will be

reached for both aspects. This redundancy must be kept in

mind when evaluating the results of the experiments.

Lrief explanatory notes about the programming aspects

are ':iven below, in the form of numbered paragraphs keyed to

the list in Table 1, with definitions for the nontrivial or

unfamiliar metrics. These notes usually supply Loose

exoLanations for the general concepts behind these

programming aspects, before mentioning any restrictions or

variations in how they were applied and measured in this

stJdy. Technical meanings for system- or language-dependent

terms (e.g.,t module segmwent, intrinsic, entry) also appear

here. Since computer Programming terminology is not

staniarcizedv the reader is cautioned against drawing

inferences not oasea on this dissertation's definitions.

.x:o1anator X g22 f2 It Pr2grI ADg !sIe~ts

(1) A con2uter Jo _ste2 is a conceptuatly indivisible

oroirammer-oriented activity that is performeo on a computer

at tme operating system command level, is inherent to the

software development effort, and involves a nontrivial

=oxenuiture of computer or human resources, IdeaLly

k ~~~31 .....
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soeakirig, examPLes of jo!) Steps would include editing

syimooLic texts, compiLing source modules, Link-editing (or

cotlecting) object modules, and executing entire programs;

howeverv ocerat ions such as querying the operating system

for status informat ion or reouesting access to on-L ine fi Les

would not aualif y as job steps- In this study,

consicerat ion for the C014PUTER JOB STEPS aspect was Limited
exclusively to the activities of compiling source modlutes or

executing entire programs, but not all of the activities so

counted dealt with the finaL product (or logical

creaecessors thereof).

(2) A modyle r.miaiLctia is an invocation of the

itoLenientation Language orocessor on the source code of an

inlividual module. In this study, only compilations of

molules comprising the final software product (or logical

Predecessors thereof) are counted in the COM~PUTER JOB STEPS\
v'VDULE CIMPILATION aspect.

(3) ALL module comoiLations are (suo)categorizeo as

either iclentiqil or uniggg dlepending on whether or not the

soirce code compiled is textuaLy identical to that of a

orevious compilation. During the development process, each

unique compilati on was necessary in some sense, whi Le an

identical compitation could conceivably have been avoided by

saving the (relocatable) object module from a previous

compi lation for Later reuse (except in the situat ion of

undoing source code revisions after they have been tested

and found to be erroneous or superf luous).

(4) A p gltgig is an invocation of a complete
Pog~ramme r-deve Loped program (after the necessary

compiLation(s) and link-editing) upon some test data. In

this study, only executions of programs composed of modules

corprising the final product (or logical predecessors
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therpof) are counted in the COMPUTER JOt STEPS\PROGRAM

EXECUTIONj asoect.

(5) A _miii6ne2os i29 11Q1 is an auxiliary

conpilation or execution of something other than the final

software product. In this study, the COMPUTER JOB STEPS\

"ISCELLANEOUS aspect counts exactly those activities

inclucea in the COMPUTER JOB STEPS aspect but not incluaed

in the CO4PUTER JOB STEPS\MODULE COMPILATION or COMPUTER JOB

STEPS\PRnGRAm EXECUTION aspects.

(6) An essentiaj i2q ste is a computer job step that

involves the final software product (or Logical predecessors

thereof) and could not have been avoided (by off-Line

cotputation or by on-Line storage of previous compilations

or results). In this study, the COMPUTER JOB STEPS\

ESSENTIAL asoect is the sum of the COMPUTER JOB STEPS\MODULE

COmPILATION\UNIQUE aspect plus the COMPUTER JOB STEPS\PROGRA M

EXECUTION aspect.

(7) The AVERAGE UNIQUE COMPILATIONS PER MODULE aspect

is a way of normalizing the COMPUTER JO STEPS\MODULE

C04PILATION\UNIQUE aspect.

(3) The MAXIMUM UNIQUE COMPILATIONS FOR ANY ONE MODULE

asoect is another way of normalizing (by isolating the worst

c3se) the COMPUTER JOB STEPS\MODULE COMPILATION\UNIQUE

aspect.

(9) The 21:22La gbingl metric [Dunsmore & Gannon 77)

is a measure of the total amount of textual revision made to

croiram source code during the (postdesign) software

development period. The rules for counting program changes

are designed to identify individual conceptual changes

a;orithmicatLye .ach occurrence of the following revisions
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is counted as a single program change: modification of a

singLe statement, insertion of contiguous statements, or

modification of a single statement followed immediately by

insertion of contiguous statements. However, the following

revisions are not counteJ as program changes: deletion of

contigjuous statements, insertion of standard output

statements or special conpiler-provided debugging

directives, and instances of Lexical reformatting without

syntact ic/semantic alteration.

see Chapter v for further discussion of the program

changes metric.

(10) A rngdule is a separately compiled portion of the

covplete software system. In the implementation Language

SI4PL-T, a typical module is a collection of the

declarations of several global variables and the definitions

of several segments. In this study, only those modules

which comprise the final product are counted in the MODULES

asoect.

(11) A searnent is a collection of source code

statements, together with declarations for the formal

;.rameters and Local variables manipulated by those

statements, that may be invoked as an operational unit. In

the implementation language SIMPL-T, a segment is either a

value-returning fuD.12n (invoked via reference in an

expression) or else a non-value-returning roslFOI!re (invokeo

Via the CALL statement). The segment, function, and

orocedure of SIMPL-T correspond to the (sub)program,

function, and subroutine of Fortran, respectively.

(12) The group of aspects named SEGMENT TYPE COUNTS

gives the absolute number of programmer-defined segments of

each type. The group of aspects named SEGMENT TYPE

00CENTAGES gives the relative percentage of each type of
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segment, comoared with the total number of proqrammer-

defined segments. The latter group of aspects is a way of

normaLizing the former groups of aspects.

(13) Since in the implementation Language SIMPL-T

segment definitions occur within the context of a moduLe, a

natural way to normalize (or average) the raw counts of

segments is provided. The AVERAGE SEGMENTS PER mODULL

asaect represents the average size, in segments, of modules

in the program.

(14) The LINES aspect counts every textual Line of

delivered source code in the final product, including

coi ments, compiler directives, variable declarations,

executable statements, etc.

(15) The STATEMENTS aspect counts only the executable

constructs in the source code of the final product. These

are high-levet, structured-programming statements, including

sivple statements--such as assignment and procedure catL--as

well ds compound statements--such as if-then-else and while-

do--which have other statements nested within them. The

i Lementation Language SIMPL-T allows exactly seven

different statement types (referred to Oy their

distinguishing keyword or symbol) covering assignment (.=),

alternation-selection (IF, CASE), iteration (wHILE, EAIT),

anj crocedure invocation (CALL, RETURN). Inout-output

operations are accomplished via calls to intrinsic

procedures.

(18) The group of aspects named STATEMENT TYPE COUNTS

gives the absolute number of 'executable statements of each

tyoe. The group of aspects named STATEMENT TYPE PERCENTAGES

gives the relative percentage of each type of statement,

cotpared with the total numoer of executable statements.
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The totter group of aspects is a way of normalizing the

former groups of aspects.

(17) AS mentioned abovet the := symbol aenotes the

issionment statement. It assigns the value of the

exoression on the right hand side to the variable on the

left hand side.

(1d) 3oth if-then and if-then-else constructs are

counted as IF statements. Each IF statement allows the

execution of either the then- or else-part statements,

deoenoing upon its boolean expression.

(19) The CASE statement provides for selection from

several alternatives, depending upon the value of an

exoression. In the implementation Language SIMPL-Tt exactly

one of the alternatives (or an optional eLse-part) is

selected per execution of a CASE, a list of constants is

exoLicitly given for each alternative, and spLection is

bdsed upon the equality of the expression value with one of

rhe constants. (These constants are referred to as 'case

laoers'; these alternatives, as "case branches.') A case

construct with n alternatives is Logically and

selmantically equivalent to a series of n nested if-then-

else constructs.

(20) The WHILE statement is the only iteration or

tooping construct provided by the implementation language

SIIPL-T. It allows the statements in the loop booy to be

executed repeatedly (zero or more times) depending upon a

0 ooLean expression which is reevaluated at every iteration;

the Loop may also be terminated via an EXIT statement. Each

wmILE statement may be ootionatLy labeled with a desi3nator

(referenced by EXIT statements) which uniquely identifies it

from other nested WHILE statements.
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(21) The EXIT statement allows the abnormal

termination of iteration Loops by unconditional transfer of

control to the statement immediately following the WHILE

statement. Thus it is avery restricted form of GOTO. This

exiting may take place from any depth of nested loops, since

the EXIT statement may optionaLly name a designator which

ioentifies the Loop to be exited; without such a oesi nator

only the immediatety enclosing loop is exited.

(22) Since there are two types of segments in the

imlementation Language SIMPL-T, there are two types of

"caLls" or segment invocations. Procedures are invoked via

the CALL statement, and functions are invoked via reference

in an expression. The counts for these separate constructs

are reported separately as the (PROC)CALL and FUNCTION CALL

aspects, and jointly as the INVOCATIONS aspect.

(23) Intrin1ij means provided and defined by the

imolementation Language; 2onintrinsi means provioed and

defined by the programmer. These terms are used to

distinguish built-in procedures or functions (which are

supported by the compiler and utilized as primitives) from

segments (which are written by the programmer). NearLy aLL

of the intrinsic procedures in the implementation language

SI'IPL-T perform input-output operations and external oata

file manipulations. ALl of the intrinsic functions in

SIPL-T perform data type coercions and character string

operations.

(24) The RETURN statement allows the abnormal

termination of the current segment by unconditional

resumption of the previously executing segment. Thus it is

another very restricted form of GOTO. within a functiont a

OETURJ statement must specify an expression, the value of

which becomes the value returned for the function
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invocdtion. within a procedure, a RETURN statement must not

specify such an expression. Additionally, a simple RETURN

st3tement is optional at the textual end of Procedures; it

will ue implicitly assumed if not explicitly coded. In this

stjoy, the total number of explicitly coded and implicitly

assumed RETURN statements, both from functions and

oroceoures combined, is counted.

(25) The AVERAGE STATEMENTS PER SEGMENT aspect

nrviaes a way of normalizing the number of statements

relative to their natural enclosure in a program, the

segment. The measure also represents the average length, in

Pxecutable statements, of segments in the program.

(26) In the implementation language SIMPL-T, both

simple (e.g., assignment) and compound (e.g., if-then-else)

statements may be nested inside other compound statements.

A oarticular nestin level is associated with each

-t3tement, starting at 1 for a statement at the outermost

leveL of each segment and increasing by 1 for successively

'ested statements. Nesting Level can be displayed visually

.,i3 proper and consistent indentation of the souce cooe

!isting.

(27) The DECISIONS aspect is the sum of the numoers of

'F, CASE, and WHILE statements within the program's source

:ole. Each of these statements represents a unique

(possihtly repeated) run-time aecision coded by the

nrogrammer. Because the implementation language SIMPL-T has

only structured control structures, this aspect is closely

related to the cyclomatic complexity metrics discussea

te t O.

(28) Tokens are the basic syntactic entities--such as

keywords, operators, parentheses, identifiers, etc.--that
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occur in a program statement. The average number of tokens

cer statement may be viewed ds an indication of how mucn

"information" a typical statement contains, how "powerful" a

tyoicaL statement is, or how concisely the statements are

codeJ.

(p9) An iaQ Ilge is the syntactic occurrence of a

construct oy which either a programmer-defined segment or a

bjilt-in routine is invoked from within another segment;

both procedure calls and function references are counted as

!%VOCA T IONS. They are (sub)categorized by the type (i.e.,

+unction or procedure, nonintrinsic or intrinsic) of segment

or routine being invoked.

(30) The group of aspects named AVERAGE INVOCATIONS

PE? (CALLING) SEGMENT reoresents one way to normalize the

absolute number of invocations. These aspects reflect the

average number of calls to programmer-defined segments and

built-in routines from a programmer-defined segment. They

are (suo)categorized oy the type of segment or routine being

invoked.

(31) The group of aspects named AVERAGE INVOCATIONS

0 ER (CALLED) SEGMENT represents another way to normalize the

aosolute number of invocations. These aspects reflect the

avera~e numoer of calls to a programmer-defined segment from

other segments. They are (suo)categorized by the type

(i.e., function or procedure) of segment being invokeo.

(32) A gata 31rijab i is an individually named scalar

or structure. The implementation language SIMPL-T provides:

(a) three data tr2es for scalars--integer, character, and

(varying-Lengtn) string;

(o) -ne kind of data structure (besides scalar)--single

uimensional array, with zero-origin subscript range;
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a no

(c) several LeveLs of si212e (as explained in note 33 oeIow)

for data variables.

In aduition, all data variaoles in a SIMPL-T program must be

ex:Licitty declared, with attributes fully specified. The

DATA ARIASLES aspect counts each data variable declared in

the inal software product once, regardless of its type,

structure, or scope. Note that each array is counted as a

singLe data variable.

(!3) In the implementation Language SImPL-T, data

viriautes can have any one of essentially four Levels of

sco P--entry global, nonentry global, parameter, and Local--

-Oeoenaing on where and how they are declared in the program.

Note that the notion of scope deals only with static

accessibility by name; the effective accessibility of any

variaote can always be extended by passing it as a parameter

between segments. The scope Levels are explained here (and

presented in the aspect (sub)categorizations) via a

rierarchy of distinctions.

The primary distinction is between global ana
no-i Lobal. GLooaL variables are accessible by name to each

rlt. egmencs in the module in which they are declarea.

o~aj, variaoles are accessible oy name only to the

sinjle segment in which they are declared.

GLobal varaibtes are secondarily distinguished into

entry and nonentry categories. Entry a o is may be

aLcessioLe by na'-e to each of the segments in several

molules (as explained in note 34 below). Nann~r t b.iis

are accessiole by name only within the module in which they

are JecLared.

,4ongLobaL variaotes .re secondarily distinguished into

formal parameters and Locals. Formal plr1!tj srs are

accessible by name only within the enclosing (called)

s~e Tentq out their values are related to the calling segment
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(as exolained in note 36 below). L2_IS are accessible by

navie only within the enclosing segment, and their values are

completely isolated from any other segment.

(34.) Entry means that the data variable (explicitly

declarea as ENTRY in one mooule) is accessible from within

other q eoarateLy compiled modules (in which it must be

exalicitly declared as EXTernal). UQnfn1ry means that the

d3ta variable is accessible only within the modute in which

it is declared. In this study, these terms are used only in

rpference to global variables, although the implementation

tan;uage SIMPL-T handles the accessibility of segments

across modules in the sane way.

Although the implementation Language SIMPL-T does allow

the ExTernal attribute to be declared Locally so that just

the enclosing segment has access to an identifier decLarea

as ENTRY in another module, this feature is seldom used; it

never occurred in any of the final software products

ex3mined in this study.

(35) ' _gified means referred to, at least once in the

vr +grom source code, in such a manner that the value of the

data variable miiht be (re)set when (and if) the appropriate

st3tements were to ue executed. Data variables can be

(re)set only oy (a) being the "target" of an assianment

statement, (b) being passed by reference to a programmer-

Jefired segment or built-in routine, or (c) being named in

an "input statement." (This third case is really covered by

the secona case since all the "input statements" in SIMPL-T

are actually calls to certain intrinsic procedures with

oasseu-oy-reference oaraveters.) Vn!22i1ieS means referred

to, throughout the program source code, in such a manner

that the value of the data variable could never be (re)set

r4Jrin,, execution. These terms refer only to global data

var i 3Dles.
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Any global variable is allowed to have an initial value

(constants only) specified in its declaration. Gtobaks

which are initiaLized but unmodified are especially useful

in SIMPL-T programs, serving as "named constants."

(36) The inplementation language SIMPL-T allows two

tyoes of parameter passage. Pass-by-vjtue means that the

value of the actual argument is copied (upon invocation)

into the corresponding format parameter (which thereafter

behaves like a local variable for all intents and purposes);

the effect is that the called routine cannot modify tne

value of the calling segment's actual argument. Pass-by-

referee means that the address of the actual argument

(,jhich must be a variable rather than an expression) is

passed (upon invocation) to the called routine; the effect

is that any changes made by the called routine to the

corresponding formal parameter wilt be reflected in the

value of the calling segment's actual argument (upon

return). In SIMPL-T, formal parameters that are scalars are

normalLY (default) passed by vatue, but they may be

A 4LicitLy declared to be passed by reference; formaL

..,rameters that a,-e arrays are always Passed by reference.

(37) The jroup of aspects named DATA VARIABLE SCOPE

COJNTS gives the absolute number of declared data variables

iccoroing to each level of scope* The group of aspects

ia-ed ATA VARIA8LF SCOPE PERCENTAGES gives the relative

percentage of variaotes 3t each scope level, compared with

the total number of declared variables. The latter group of

asoects is a way of normalizing the former groups of

a)Dects.

(30. A natural way to normalize (or average) the raw

counts of data variables is provided# since data variable

•JectLdrations in the implementation language SImPL-T may only
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ap~ear in certain contents within the program: gtobals in

the context of a module and nonglobats in the context of a

segment. The group of aspects named AVERAGE GLOgAL

VAQlAbLES PEq MODULE represents the average number of

glbaLs declared for a module. The group of aspects named

AVERAGE NONGLOBAL VARIABLES PER SEGMENT represents the

averaGe number of nonglobals declared for a segment.

(3*) Since there are two types of parameter passing

frecnanisms in the implementation Language SI*PL-T (as

exalained in note 36 above), it is desirable to normalize

their raw frequencies into relative percentages, indicating

the programmer's degree of "preference" for one type or the

other. The group of aspects named PARAMETER PASSAGE TYPE

0ECENTAGES gives the percentages of each type of parameter

relative to the total number of parameters declared in the

program.

(40) A segment-glooaL uSa dir (p,r) is an

instance of global variable r being used by a segment

(i.e., the global is either modified (set) or accessed

(fetched) at Least once within the statements of the

segment). Each usage pair represents a unique "use

connection" between a global and a segment. In this study,

segment-gtobal usage pairs were (suo)categarized by the type

(i.e., entry or nonentry, modified or unmodified) of global

jata variable involved and were counted in three different

ways.

First, the (SEGRENTGLOPAL) ACTUAL USAGE PAIRS aspects

count the absolute numbers of realized usage pairs (p,r)

the global variable r is actually used by segment p a

They represent the frequencies of use connections realized

within the program. Second, the (SEGMENTGLOBAL) POSSIBLE

!JSAGE PAIRS aspects count the absolute numbers of potential

usaue pairs (pr) , given the program's global variables
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.inJ tneir declared scoue: the scope of global variable r

-ereL/ contains segment p v so that p coul potentially

,4odify or access r * These counts of possible usage pairs

are computed as the Sum of the number of segments in each

qLooal's scooe. They represent a sort of "worst case"

frequencies of use connections. Third, the (SEGMENTGLLBAL)

USAGE PAIR RELATIVE PERCENTAGE aspects are a way of

normalizing the numoer of usage pairs since these measures

are ratios (expressed as Percentages) of actual usage pairs

to possible usage pairs. They represent the frequencies of

reaLi-ea use connections relative to potential use

cj'nections. These usage pair relative percentage metrics

are emoirical estimates of the likelihood that an arbitrary

segment uses (i.e. sets or fetches the value of) an

ar3i*rary global variable.

In some sense, all three types of aspects dealinu with

segment-global usage pairs (actual, possible, and relative

percentage) reflect quantifiable characteristics of "data

mouLarization" within a program, i.e., the static

organization of data definitions and references within

segments and modules. In particular, the possible usage

ojirs aspects reflect the general degree of encapsulation

-)forcea by the implementation Language for global

variaoles. "oreover? the usage Pair relative percentage

asoects retlect the general degree of "globality" for global

variables, i.e., the extent to which globals are actually

usea oy those segments that could possibly do so.

(41) A se.ment-globaL-segment d#t. Injnjc (Stevens,

Oy-brs & Constantine 74, op. 118-119] (prq) is defined as

an occurrence of the following arrangement in a program: a

selment p modifies (sets) a global variable r that is

also accessed (fetched) by a segment q , with p different

*r~m n - The (SEGMENTGLOBALSEGMENT) DATA BINDINGS

asoects count these unique communication paths between pairs
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of sewments via glooaL variables. These aspects thus

reflect the degree of one form of connectivity within a

progra .

See Chapter V for further discussion of the data

bindings metrics.

(42) In this study, segment-global-segment data

bindings were counted in three different ways: ACTUAL,

POSSIoLE, and RELATIVE PERCENTAGE. First, the DATA

PI4DINGS\ACTUAL aspect counts the total number of data

bindings actually coded in the program, reflecting the

degree of realized connectivity. Second, the DATA BIhDINGS\

POSSIOLE aspect counts the total number of data bindings

that could possibly be allowed, given the programs

organizational structure* It reflects the degree of

potential connectivity. Third, the DATA BINDINGS\RELATIVE

PERCENTAGE aspect is the ratio (expressed as a percentage)

of actual data bindings to possible data bindings,

reflecting the normalized degree of realized connectivity

relative to potential connectivity.

See Chapter V for further discussion of the data

bindings metrics.

(43) Actual data bindings are (sub)categorized

deoencing on the invocation relationship between the two

segments. A data bindin3 (orq) is su_9fun&ti2! if

either of the two segments o or q can invoke the other,

whether directly or indirectly, as a "subroutine." A data

binding (p,rtq) is intpEnqtE if neither of the two

segments p or q can invoke the other, whether directly

or indirectly.

See Chapter V for further discussion of the data

bindings metrics.

(44) j 2g1ilzzy [McCabe 76) is a graph-
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theoretic measure of control-flow complexity. For an

imoLementation Language with only structured control

structures (sucn as SIMPL-T), this measure is dependent only

on the number of predicates (i.e.,t aoolean expressions

governing flow of controL) in the source code. The

cyctomatic complexity v(p) of a program P with 11

oredicates strewn among s segments is computed as

v(P) = + s

the cycLomatic complexity v(S) of a segment S with iT

oredicates is computed as

v (S) = + I .

See Chapter V for further discussion of the cycLomatic

complexity metrics.

(45) Four definitional variations of the basic

cyclomatic complexity measure were examined in this study in

orler to explore alternatives for identifying predicates and

for handling case statement constructs. Under the SIMPPRED

alternative, simple 9oolean subexpressions joined by and or

gr connectives are each counted as predicates. Under the

COWPPRED alternative, only each complete Boolean expression

is counted as a preaicate. Under the NCASE alternative,

each case statement construct is counted as contributing n

predicates, where n is the number of "cases" involved.

Under the LOGCASE alternativet each case statement construct

is counted as contributing LLog 2( n )J* predicates, thus

giving a discount for case statement constructs relative to

series of nested ifthenetse constructs.

See Chapter V for further discussion of the cyclomatic

conpLexity metrics.

(46) For each of the definitional variations, tne

CYCLOMATIC COMPLEXITY%...\TOTAL asoect measures the

* The notation L x J signifies the greatest integer less
than or equal to x
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cycLomatic complexity of the entire program. It is simply

the sum of cycLomatic co-nplexity values for the individual

segments comprising the program.
,ee Cnaoter V for further discussion of the cyclomatic

co-mplexity metrics.

(47) For each of the definitional variations, the

CYCLOMATIC COMPLEXITY\...\#SEGS:CC>=1O aspect counts the

nu-nDer of segments in the program whose cycLomatic

complexity values equal or exceed the threshold value 10.

See Chaoter V for further discussion of the cyclomatic

complexity metrics.

(46) For each of the aefinitional variations, a common

descriptive statistic of the empirical distribution of

cycLomatic complexity values from the individual segments

comprising an entire an entire program was used as a vehicle

for measuring the general level of cyclomatic complexity

within the relatively nontrivial segments of the program.

This descriptive statistic, known as a ggul [Conover 71,

P). 11-32, po. 72-73], can be Loosely described (in the

discrete case) as the value (of the random variable in

q-lestion) corresoonding to a Particular fixed probability

level on the cumulative relative frequency curve

(representing the distrioution of that random variable).

The CYCLOMATIC COMPLExITY\,,,\ f QUANTILE POINT VALUE

asoects are defined to measure the Largest integer x such

tr3t the fraction of cyclomatic complexity values which are

less than x is Less than or equal to the fixed fraction

f , The CyCLOMATIC 1OM0LEXITY\,.,\ f QUANTILE TAIL AVERAGE

asoects are defined to measure the average of cycLomatic

complexity values greater than or equal to the f quantile

point value. Several particular quantites were examined in

this study: the n.5 quantiLe is closely related to the

distribution's median, and the 3.7, 0.8, and 0.9 quantiles
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nrovide a series of increasingly smaller tails of the

di s t r ihut ion.

See Chapter V for further discussion of the cycLomatic

complexity metrics.

(4i) According to software science theory [Halstead

77], several interesting quantities can be computed from the

soirce code of a program anO uSed to measure characteristics

of both the aostract algorithm and its expression as

imoLemented. ALL of these software sienae gu o-itie E are

conputed in terms of the number of conceptuaLly unique

"ooerators" and "operands" and the total occurrences of such

"ocerators" and "ooerands" within a program. In this study,

these "operators" and "ooerands" were identified

syntacticaLLy according to a set of rules established for

the implementation Language SIMPL-T.

See Chapter V for further discussion of the software

science metrics.

(50) Given the basic parameters of software science:

total "operator" count N1

total "operand" count N 2

unique "ooerator" count n1

unique "ooerand" count T 2

unique potential "operand" count Ti

the following formulas define the software science

ouantities examined in this study;

VDCAEzULARY T1 = r) + T 2

LE4GTH N =N 1  N21 + N2 n ) T1 * t (l )

FSTIATED LENGTH n (n 1 og2 (n 1 + ( 2 tog2 2

%IFFEREN CE(NR) = - N (N)

V L u4E V = N Log 2 (n)

P3TENTIAL VOLU= 2 * Log2 ( 2 + 2*)

Pfk3GOAM LEVEL L V* / V

DIFFICULTY D= 1 P L
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INTELLIGENCE CONTENT I = (2 / /1 I (n2 N 2) V

*DIFFERENCE(V*#I) = (i - V*I) I (V*)

LANGUAGE LEVEL X = L * V*

EFFORT E = V *

ESTIMATED TI"E T = E / S

ESTIMATED BUGS = L • E / E0

wrere S and E are psychologically determined constants*

See Chapter V for further discussion of the software

science metrics.

(51) Two different calculation methods were emoLoyed

in the study to compute the subset of software science

quantities whose exact values cannot be obtained directly

(via the defining formulas) from a program's source code.

These cdculation methods each rely upon a different

estination technique to obtain approximate values for these

quantities. The 1ST CALCULATION METHOD relies upon the

commonly accepted theoretical estimate of the orogram Level

quantity; the 2ND CALCULATION METHOD relies upon an

internally applied empirical estimate of the Language level

quantity.

See Chapter V for further discussion of the software

science metrics.

(99) Several instances of duplicate programming

asoects exist in the Table 1 Listing. That is, some

logically unique aspects reappear with another label, for

reasons explained aoove. Listed below are the pairs of

-luolicate programming asoects that were considerea in this

study:

le FUNCTION CALLS <=> INVOCATIONS\FUNCTION

NONINTRINSIC • NONINTRINSIC

it INTRINSIC <=> INTRINSIC

4e STATEMENT TYPE COUNTS%
(PROC)CALL <=> INVOCATION S\PROCEDUkE

NONINTRrustC <=> NONINTRINSIC
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114'TPINSIC (=> IN TR INSI C

'.AVERAGE INVOCATIONS DER
(CALLING) SEGMENT\ < AVERAGE INVOCATIONS PER
NONINTRINSIC (CALLED) SEGMENT

SO'LFTWARE SCIENCE SOFTWARE SCIENCE
OUANrITIES\INTELLIGENCE <=> QUANTITIES \1ST CALCULATION
CONTENT mETHOD\POTENTIAL VOLUME

-?y definition, the data scores obtained for any pair of

du~ticate aspects will be identical, and thus the same

statisticaL conclusions will be reached for both aspects.



CHAPTER V

This chapter orovioes an in-depth discuSsion of the

elaoorative programming aspects examined in the study. The

material is presented, in a tutorial fashion, in order to

rotivate their aopeal as software metrics and to explain how

they might be interpreted. The reaoer who is acquainted

with one or nore of these measures might consider skimming

the corresponding sections.

_0 r_ r,* Changes

The program changes metric pertains to textual

revisions made to program source code during development?

fr3m the time a program is first presented to the computer

system, to the completion of the project. The metric's

definition is framed so that one program change approximates

one conceptual change to the program. The following rules

4or ioentifying program changes are reproduced from

[Dunsmore 78, pp. 19-20]:

"The following text changes to a program represent one
program change:

1. One or more changes to a single statement.
(Even multiple character changes to a
statement represent mental activity with only
a single aostract instruction.)

2. One or more statements inserted between existing
statements.

(The contiguous group of statements inserted
probably corresponds to the concrete
statements that represent a single abstract
instruction*)

3. A change to a single statement followed by the
insertion of new statements.

IThis instancp probably represents a
discovery that an existing statement is
insufficient and that it must be altered and
supplemented by additional statements to
implement the abstract in;truction
involved.)

"however, the following text changes to a program are
not counted as pro;ram changes:
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1. The deletion of one or more statements.
(Deleted statements must usually be replaced
by other statements elsewhere. The inserted
statements are counted; counting deletions as
well would give double weight to such a
change. 3ccasionaLLy statements are deleted
but not replaced; these were probably being
used for debuiging purposes and their
deletion requires Litte mental activity.)

2. The insertion of standard output statements or
insertion of soecial compiter-provioed Oebuiging
statements.

(These are occasionally inserted in a
wholesale fashion during debugging. when the
problem is found, these are then all removed,
and the necessary program change takes
place.)

7. The insertion of blank lines, insertion of
comments, revision of comments, and reformatting
without alteration of existing statements.

(These are all judged to be cosmetic in
nature. )"

Fro~ram changes are counted aLgorithmically by comparing the

source code from each pair of consecutive compilations of a

module (or Logical predecessor thereof) and applying the

identification rules. Thus the total number of program

ch3nges is a measure of the amount of textual revision to

source code during (oostlesign) system development.

The program changes metric may be interpreted as a

Dr~ojrdming complexity measure, because textual revisions

7--p usuatly necessitated by errors encountered while

tuiLding, testing, and debugging software. Independent

research [Dunsmore & Gannon 77) has demonstrated a high

(r3nk order) correlation between total program changes (as

counted automatically according to a specific algorithm) and

total error occurrences (as tabulated manually from

exhaustive scrutiny of source code and test results) during

ssftware implementation in the SIMPL-T programming Language.

Thus empirical evidence justifies consideration ot the

DrOgram changes metric as a direct measure of the relative

nuioer of programming errors encountered outside of design

work. It is reasonable to assume that each textual revision

ert ;its some expenditure of the programmer's effort (e.g.,

nlinning the revision, editing source code on-line), In
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th t sense, this metric may also be considered an indirect

measure of the level of human effort devoted to

imo tement at ion.

Control-flow complexity may be measured in terms of

cyctomatic complexity ['cCabe 76), a graph-theoretic metric

that is independent ot physical size (i.e., insertion or

deletion of function statements Leaves the measure

unchanged) and dependent only on the decision structure of a

program. The cyctomatic number v(G) of a graph G having

n nodes, e edges, and p connected components is

defined as

v(G) z e - n * o

In a strongly connected graph, the cyctomatic number is

equal to the minimum number of basis paths from which all

other oaths may be constructed as linear combinations in an

edge-atgebraic fashion (see [M cCabe 76] for details). By

mojeLing the control flow of a program as a graph in the

traditional manner, the cyctomatic complexity measure is

defined to be the cycLomatic number of the graph

corresponding to the program's flow of control.

For a structured Language Like SIMPL-Tt it is not

necessary to construct a control-flow graph in order to

measure a program's cycLomatic complexity. The measure can

be computed directly from the source code simply by counting

the number of oredicates (i.e., Boolean expressions

governing control flow), since the predicates of the program

correspond exactly to the binary-branching decision points

of the controt-flow graph. It is easily shown, using a

temma proven in (ills 7Z , that for a segment S with It

credicates the segment's cyclomatic complexity is
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v(S) Tr .1

and f(jr a royram P with II predicates strewn among s

segments the program's cyclomatic complexity is

v(P) = + s o

This measure originated as an absolute count of the

maximum number of Linearly independent execution paths

throuvh a segment, in the graph-theoretic edae-algebraic

sense alluded to above. Since each of these paths merits

individual testing, the measure was proposed to serve as a

auantitative indicator of the difficulty of testing a given

segment to a certain aegree of thoroughness. Testability is

clearly an issue closely related to software complexity in

-eneral, and a program's cycLomatic complexity may be viewed

as one quantitative measure of its control-structure

complexity.

Defin itiona I Variations

Several variations of the basic cycLomatic complexity

neasure were considered, because there are at least two

cefinitional issues for which intuitively motivated

alternatives lead to meaningful variations.

One of these issues is the weighting given to instances

of case statement constructs. The original definition of

cycLomatic complexity views a case statement as the

semanticatty equivalent series of nested ifthenelse

statements: each case statement contributes n units of

cyclomatic complexityg where n is the number of individual

@Icases" involved. It can be argued, however, that a case

st3tement deserves a smatler contribution to cyctomatic

coaplexity since its inherent uniformity and readability

have a moderating effect on programmer-perceived complexity

(relative to an explicit series of nested ifthenelse
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statements). One reasonable alternative views each case

statement as contributing LLog 2 C n )J* units of cycLomatic

co-nptexity, where n is the number of inaiviouaL "cases"

involved. This logarithmic weighting is anpropriate since a

case statement's moderating effect seems to increase with

the number of "cases" involveo.

The other issue is the manner of counting predicates.
The original definition counts simple (sub)predicates

iniividually, so that the compound predicate

(I < J) in ((A(I)= A(J)) 2r (ngl SORTED))

woull contribute three units of cyclomatic complexity, for

example. An alternative definition considers each complete

oredicate as an indivisible part of a program, contriouting

one unit of cyclomatic complexity. The motivation is that

the complete predicate represents a single abstract

coidition governing the flow of contro(. Note that this

issue is the basis for a proposed extension [Myers 77] to

the original cyctomatic complexity measure. This issue also

affects the way individual "cases" of a case statement

construct are identified and counted. The original

definition counts each case Label separately, since multiple

case laoels on the same case branch are semantically

ecuivatent to simple predicates joined by ors to form the

goalean expression governing the case branch. The

alternative defintion counts only the case branches

themselves, regardless of case label multiplicity. In

parallel with the motivation given above, multiple case

la:ets on a case branch represent a single abstract

condition governing that branch (e.g., the set of case

ta:eLs Q, I , ... , 2 may be abstracted to d .Lg).

This study examined the four variations of cyclomatic

* "ne notation L x-J signifies the greatest integer less
than or eauat to x
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coiplexity defined as follows for the SI4PL-T programming

(an jud ie :

SIMPPPED-NCASE -- Simple predicates contribute 1 unit;

case statements contribute 1 unit for each case

Label.

SI.4PPRED-LOGCASE -- Simple predicates contrioute 1

unit; case statements contribute LLog 2( n )J

units, where n is the number of case Labels.

COMPPRED-NCASE -- Compound predicates contribute 1

unit; case statements contribute 1 unit for each

case branch; multiple case Labels on the same case

branch are disregarded.

COMPPRED-LOGCASE -- Compound predicates contribute 1

unit; case statements contribute LLog 2 ( n )j

units, where n is the number of case branches;

multiple case labels on the same case branch are

disregarded.

Note that the SIMPPRED-NCASE variation of cyclomatic

complexity is McCabe's original measure.

There are several ways to apply the cyclomatic

complexity measure (or variations thereof) to an entire

orogram in order to obtain a metric for its overall control-

flow complexity. First of all, the metric is defined

directly for a program composed of individual segments: a

program's total cycLomatic complexity is simply the sum of

its segments' cyclomatic complexities. However, this total

cyclomatic complexity measure is not particularly useful as

a oasis for comparing entire programs because it is, in a

certain sense, insensitive to the program's modularization.

As a metric, the total cyctomatic complexity of a program is

(oy definition) a linear function in two variables, tne

nuioer of predicates ann the number of segments. A subtle
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tr3de-off relationship exists between these two variaoLes,
such that substantial fluctuation in the metricos value can

arise from simpleminded changes to a program's
moJuLarization atone.

A better comparison of entire programs is afforded by

focusing attention upon the cyclomatic complexity values of
individual segments and upon instances of segments with high

values of the metric. MCCabe originally proposed the number

!' as a reasonaole thresholo value for a segment's

cycLomatic comolexity. Segments exceeding this threshold

need to be recoded or decomposed into smaller segments in
order to attain an acceptable Level of testability ano

co'ntrol-fLow complexity. Hence, a second way to apply the

CycLomatic complexity measure to an entire program is to

count the number of segments whose cycLomatic complexity

value exceeds this threshold. In this case, the basis for

covparing entire programs is the frequency of segments with

unacceptably high cyclomatic complexity.

Finally, it would be desirable to compare the full
spectrum of cyclomatic complexity values for the individual

segments of one program against that of another programt

since consideraote diversity often exists. Programs

typically contain several small segments with very Low
cycLomatic complexity values (e.g., a function to compute

the dvera.ge of a vector) and a few large segments with high

cycLomatic complexity values. Being easily understood and

testea, the small segments are relatively inconsequential,

while the Large segments contain the substance of the

orogram and contribute most of the consequential control-

flow complexity. IdeaLly, one wishes to disregard the
"svaLLer" cycLomatic comolexity values and summarize the
magnitude and frequency of the "larger" cyclomatic

covplexity values via a single quantitative indicator, but
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o so in a flexibLe, normalized fashion, where "smatter" and

"larger" are determined relative to one another within each

orogram.

This ideal can be aoproximated by means of the

quantiLes of the empirical distribution of cyclomatic

conplexity values across the segments comprising the program

(see Figure 1). QuantiLes are a standard tool from

descriotive statistics [Conover 71, pp. 31-32, pp. 72-73],

covmonly used to summarize the "shape" and "position" of a

listribution function, especialLy its upper tail region.

Both the quantile Point value (i.e., the largest integer x

such that the fraction of cycLomatic complexity values which

are Less than x is less than or equal to some fixed

fraction) and the quantile tail average (i.e., the average

of cycLomatic complexity values greater than or equal to the

nuantiLe point value) are normalized ways to quantify just

how high the cyclomatic complexity is for the relatively

nontriviaL segments of a program. Several different

Quantiles were examined: the 0.5 quantiLe is closeLy related

to the median of the distribution, and the 0.7, 0.8, and 0.9

ouantiles provide a series of increasingly smatler tails of

the distribution. Thus, the basis for this third comparison

of entire programs is a series of quantitative descriptors

of the empiricaL distribution of cycLomatic complexity

values within a Program.

The data bindings metrics [Stevens, Myers & Constantine

74; 7asili & Turner 75; Turner 76] originated as a way to

quantify a certain kind of connectivity (i.e., directed

cowmunication between segments via global variables) within

a orogram. Their motivation is based on the intuitive
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figure 1. Fregumencx 2is1tW1-J2n 2f_ US12MI~o~Zif 12!!21Ei1y

6cth the absoLute and the relative-cumulative frequency
distribution of cycLomatic comoLexity values from 47
seguents comprising an entire program are plotted. The tail
region associated with the 0.8 quantiLe is shaded on each
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orinciole that the Logical complexity of a composite system

is a function of the muttiolicity of connections amon its

component parts (cf. [Simon 693).

A segment-gLobal-segment dta tinding (p,r,q) is an

occurrence of the following arrangement in a program: a

segment p modifies a global variaole r that is also

accessed by a segment q , with segment p different from

segment q . The existence of a data binding (pvrvq)

suggests that the behavior of segment q is probably

deoenodent on the performance of segment p through the data

variaote r , wnose value is set by p and fetched by q

The binding (p,r,q) is different from the binding

(I,rp) which may also exist; occurrences such as

(Drp) are not counted as data bindings. Thus each data

binding represents a unique communication path between a

pair of segments via a gtobal variable. As a metric, the

total number of segment-gLobat-segment data bindings

reflects the aegree of that kind of connectivity within a

orogram.

Data bindings may be counted in three different ways:

actual, possible, and relative percentagee (iear in mind

that, since these measures are determined statically from

the source code, the terms 'actual' and 'possible' refer to

a orogram's syntactic form only.)

First, the A count is the absolute number of data

bindings (p,r,q) actually coded in the program: segment

p contains a statement modifying global variable r , and

segment q contains a statement accessing r . This count

of actual data oindings represents the degree of realized

connectivity in the program. Second, the Rq11ibjt count is

the absolute number of data bindings Cpr #) that could

possibly be allowed under the program's structure .)f segment
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definitions and global variable declarations: the scope of

7L0oal variable r merely contains both segment P and

segment Q , So that segment o could potentially mooify

r and segment q could potentially access r . This

coint of possible data bindings represents the degree of

potential connectivity, in a "worst-case" sense. It is

computed as the sum of terms s* (s-1) for each global

variable, where s is the number of segments in that

IltoaL's scope; thus, it is heavily influenced (numerically

5.:eaking) by the sheer number of segments in a program.

',ir-z, the _re ative grCjC! e is a way of normatizin; the

aosotute numbers of data bindings, since it is simply the

Quotient (expressed as a percentage) of actual data bindings

divided by possible data bindings. It represents the degree

of realized connectivity relative to potential connectivity.

Actual data bindings may also be subcharacterizecd on

the basis of the invocation relationship between the two

segments. A data binding (p,rq) is l aflsncgntJ if

either of the two segments p or q can invoke the other,

whether directly or indirectly (via a chain of intermediate

invocations involving other segments). In this situation,

the functioning of the one segment may be viewed as

contributing to the overall functioning of the other

segment. A data binding (ptrq) is 1_n g..!2gCO.t if neither

of the two segments p or q can invoke the other, whether

directly or indirectly. The transitive closure of the call

graph among the segments of a program is employed to make

this distinction between suofunctionaL and independent data

bindings.

In some sense, all three measures dealing with segment-

globaL-segment data bindings--actual, possible, and relative

cercentage--reftect Quantifiable characteristics of a

orogram's "data modutarization" (i.e., the static
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")r~dnizdtinn of Jatd detinitions anu references within

segments and modules).

In particular, the oossibte data bindings metric

reflects the yeneral degree of encapsulation enforced by the

imoLementation Language for global variables. One can

imagine two extremes of encapsulation for the same

collection of global variables and segments. On the one

hand, the program could be written (in the implementation

language SIr4PL-T) as a single module containing alL tne

segments, with each glooal potentially accessible from every

segment. This moduLarization would maximize (explosively

so, due to the squaring of the number of segments) the

number of possible data bindings. On the other handt the

Program could be written (in the implementation language

SIMPL-T) as several modules, one for each segment, with

appropriate ENTRY and EXTernal declarations to provide each

segment with potential access to exactly those gLobals it

actually uses. This modularization would minimize the

number of possible data bindings (to precisely the number of

actual data bindings).

Moreover, the data bindings relative percentage metric

also reflects the general degree of (operational)

"globality" for the global variables declared in a programt

i.e., the extent to which gLobals are actually modified

(set) and accessed (fetched) by those pairs of segments that

couLd possibly do so. One can imagine two different

situations in which the relative percentage of data bindings

for a small set of otherwise equivalent global variables

(say, an array and an integer) would be extremely high and

extremely low, respectively. On the one hand, this global

array and global integer could be serving as a stack, and

nearly every segment that refers to these glooals could be

botn popping the stack to examine its contents and pushing
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ned items onto it. Here the two global variables are quite

central to the overalL operation of that coLlection ot

segments; their data binding relative percentage woulu be

close to one. On the other hand, this global array and

global integer could be serving as a buffer for a varying-

length vector that is initially oroduced (set) by one

segment and nondestructively consumed (fetched only) oy

several Other segments. Here the twO globaL variables are

rather incidental to the overall operation of that

collection of segments, serving merely as a convenient

medium for disseminating information (which could also have

achieved via parameter passing); their data binding relative

vercentage would be close to zero.

The software science quantities are a set of metrics

based upon the tenets of software science (Halstead 77), as

Pioneered by Halstead and his colleagues. Billed as

a branch of experimental and theoretical science

dealing with the human preparation of computer programs

and other types of written material ... ,'

software science is concerned with measurable attributes of

algorithms or programs and with mathematical relationships

among those attrioutes. Software science is

characteristically actuarial in nature: its measures and

relationships may be inaccurate when applied to individual

proirams, but they become surprisingly more accurate when

apulied to Large numbers of orograms, such as are found in

large software development projects.

The software science quantities are all defined in

The blocked quotations throughout this section are taken
4rorn (Halsteaa 77].
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terms of certain frequencies of so-called "operators" and

"ooerands" aopearing within an atgorithm's functional

specification or a PrOgramos source code implementation.

Sove uf the nuantities (e.g., vocabulary, Length, volume)

are purely descriptive and provide the building-blocks of

the theory. A few (e.g.t estimated Length) are predictive

of other descriptive quantities within the theory. Several

(e.g., program Level, language Level, effort) claim to be

quantifications of fundamentally qualitative and intuitive

concepts. Stitl other Quantities (e.g.# estimated time,

estimated bugs) purport to measure--under ideal conditions--

externally observable and Quantifiable programming

Phenomena.

f!gntificati on Criteria

The criteria for identifying "operators" and "operands"

(and their uniqueness) are important since they are the

foindation for measuring the software science quantities.

Hodeyer, this identification is an area not clearly

aoressed by the theory. Except for the Fortran programming

tanguaje, in which most of the pioneering work was done,

exoLicit standards or guidelines for identification do not

exist. For another Language, a researcher can only attempt

to adapt and extend the principles that he personally judges

to oe behind the Fortran work. The following "operator/

operand" identification criteria were designed for the

SIMPL-T programming language:

1. In general, only the portion of source code pertaining

to executabte statements (after expansion of all

DEFINE-macros) is considered.

2. Constants and data variable identifiers are natural

"operands." Data structures (e.g., arrays, files) are

considered single o~jects and not decomposed into

c oioonen t s.
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3. The input stream file and the output stream file are

counted as "ooerands," with implicit occurrences

recognized for each operation on these files.

4. The normal prefix unary and infix binary operator

symbols (i.e., for arithmetic, Logical, and character-

string operations) are natural "operators."

5. The intrinsic procedures (e.g., READ, WRITE, REWIND),

type-coercion functions, and input-output operation

keywords (e.g., EJECT, SKIP) are "operators."

6. Segment invocations (i.e., procedure calls and function

references) are "operators."

7. Different types of statements or constructs are

considered individual "operators," as follows:

(assignment)

IF...THEN.oEND

IFe.THEN...ELSE* .END

CASE. .OF...END

CASE. .OF..,ELSE. ..END

WHILE. ,.DO..,E4D

EXIT

RETURN

9. 0ther delimiter patterns are considered "operators," as

foLo. ws:

(caselabeL designation "operator")

coo *I (partword and substring "operators")

(..) (suoexpression, array subscript,

actual argument list, and function

return value "operators")

9 (List item separation "operator")

9. FinaLly, implicit statement List brackets (associated

with pairs of keywords such as THEN...ELSE and

ELSE...END) are considered "operators," as are implicit

statement separators between consecutive statements of

the same statement list.

(The quotation marks flagging "operator" and "operand" as
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technical terms are suppresseu throughout the remainder of

this section for readability.)

The five basic parameters of software science are

determined in accordance with the criteria established for

iontfying operators and operands.

The theory defines four basic parameters pertaininy to

a orosram's implementation: the total operator count N 1  ,

the total operand count N, 9 the unique operator count

n 1 and the unique operand count n 2 * The total counts

include aLl occurrences of operators/operands, while the

unique counts disregard iultipte occurrences of the same

operator/operand. Although the issue of synonymy for

operators has already been dealt with in the identification

criteria, issues of synonymy for operands still remain. In

particular, formal parameters are considered to be

synonymous with corresponding actual arguments; therefore

occurrences of formal parameter identifiers contribute to

the total operand count but not to the unique operand count,

with respect to the entire program. This rule is not,

however, applied in the case of formal parameters passed by

value and modified by the segment; because these are

actually treated as special initialized-upon-entry Local

variaotes in the implementation language SIMPL-T, they are

not considered to be synonymous operands with respect to the

entire program.

The theory defines four additional basic parameters,

analoyous to those described above, but pertaining to an

algorithm's or program's "shortest possible or most succinct

form" (i.e., its "one-Liner" functional specification,

conceived as an assignment statement or procedure call
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invoLving a single ouitt-in routine). These are the total

potential operator count N * , the total potential operand

count N 2 * , the unique potential operator count l * , and

the unique potential operano count 2* (The modifier

s*potential" and the superscripted asterisk distinguish

quantities pertaining to the functional specification from

analogous quantities pertaining to the implementation.) The

theory assumes, however, that the total potential operator/

operand counts must always equal the unique potential

perator/ooerana counts, because the most Succinct

;Qecification wouLd contain no redundant occurrences of

operators/operands. An assumption is also maoe that the

unique potential operator Count is always equal to the

coistant 2, because

"... the minimum possible number of operators .. must

consist of one distinct operator for the name of the

function or procedure and another to serve as an

assignment or grouping symbol."

Thus, all software science quantities pertaining to a

-)r-gram's specification are completely determined

Fnimerically speaking) by a single parameter# the unique

notentiat operand count n * It is the fifth basic2
carameter of software science theory and is conceptually

equivalent to the number of "logically distinct input/output

narameters" for an algorithm or orogram. This count nolds

considerable significance in both the theory and its

apolication, but unfortunately it is rather intractable for

most nontrivial programs (i.e., those whose specifications

are not easily stated as "one-liners" without gross

oversimplification). For example, some logically distinct

innut parameters may appear as special constants embedded

within the code, ana the number of logically distinct output

rara-ieters represented within a printed report is often

unclear.
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An alternative and iore tractable conceptualization

defines this uninue potential operand count simply as the

numuer of distinct operands busy-on-entry (i.e., initially

containing a value that is utilized or accessed by the

algorithm or program) plus the number of distinct operands

busy-on-exit (i.e., finally containing a value that was

furnished by the algorithm or program to be utilized or

accessea suosequently). For an individual segment, 2

may be estimated from the implementation by counting all of

the global variables that are referenced, each of the formal

Darameters, one for both the input stream file and the

output stream file (if they are read or written), and one

for the function return value (if the segment is a

function). It shouLd be noted that this estimate is a lower

boind since it disregards the oossibility that a format

parameter which is passed by reference should be counted

twice because it is both busy-on-entry and busy-on-exit.

For an entire program, fl * may be estimated from the

imoLementation by counting ore for both the imput stream

file and the output stream file if the program reads or

writes them, plus one for the set of control bits or option

letters that might oe used to regulate the program's

execution.

Thus, for the programs examined in this study, the

esti-ated number of unique potential operands is always

either 2 or 3, depending on whether
output listing compileand~execute( inputdeck )

or

outputlisting

compileand execute( inputdeck, option letters )

states their functional specification. It is clear that

this kind of estimation of n 2* from the imolementation is

considerably more accurate for individual segments than for

entire programs; this fact is partial motivation for the
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particular estimation techniaue employeL the second

methot! of calculation discussed below.

The derived properties of software science are defined

in terms of the five basic parameters.

The vocabulary fl is defined as

) = I 1 + T2

inI renresents the cardinatity of the set of Logically

distinct "symbols" used to implement the program. The

Length N is defined as

N = N N2

ani represents the abstract size of the program-s

implementation as measured in units of Logically distinct

"symbols." This property is closely associated with the

numoer of syntactic tokens in the source code of a program;

it can be considereo a refinement of the rudimentary TOKENS

isDect. The estimated Lenth R is defined as

q (1 * Log 2 ( 1 )) + (2 Log 2( 2 ))

-eflecting one of the fundamentaL conjectures of the theory;

namely, that the observed length of a program's

iDlementation is a function solely of the number of unique

operators/operands involved.

Considerable empirical evidence has supported the

vatidity of this "length prediction equation" on tht er

fi.e., major software studies have reported correlation

coefficients of between 3.95 and 0.99 for the relationship

het.een N and q [Fitzsimmons & Love 78)). HOwever, its

accuracy for tny livern E rr may be low; the theory

attrioutes this to the presence of so-called "impurities"

tnl.icating a Lack of polish in a program. These impurities

include instances of unnecessary redundancy and needless
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constructions, such as inverse operations that cancel each

other, common subexpressions, or unreachable statements.

This has Led some researchers to view the discrepancy

between N and R as a possible software quality measure.

For these reasons, it was desirable to examine the

YDIFFEPENCE(N,n) aspect, calculated as

(IX - NI) / (N)
which normalizes the degree of discrepancy.

The voJum V is defined as

V = N * Log 2 (n

and represents the abstract size of the program's

imolementation as measured in units of information-theoretic

bits. Specifically, it is the minimum number of bits

requirecl to encode the implementation as a sequence of

fixed-width binary strings (since it is the product of the

total number of "symbols" and the minimum bandwidth required

to distinguish each of the unique "symbols"). The 2210tiat

vYu_"e V* is defined analogously as

V* = N* * Log2 (*)

= (NI* + N2 *) * log 2 (n 1 * + T 2 )

= I + n 2*) * Lg 2 ( 1 * + n2
(2 + n 2*) * Log2(2 + T2.) .

The potential volume of any algorithm or program is

theoretically indeoenOent of any Language in which it might

be implemented; thus,

"Orovided that r) * is evaluated as the number of2
conceptually unique operands involved, V* appears to

be a most useful measure of an aLgorithm's content."

The Pro.ar tj v L is defined as

L Z V* / V

-vn, as a ratio of volumes, can only take on values between

iero ana one; it quantifies the intuitive concept of "level

datstraction" for an inplementation. Since the potential
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volume of any given algorithm is constant, the formula

inlicdtes an inverse relationship (as desired intuitively)

bet.een Level of abstraction (measured by L ) and size

(measured by V ). The theory also attaches meaning to the

reciprocal of program level, defining diffiC Jty D as

which may alternatively be viewed a- the amount of

rejundancy within an impLementation.

unfortunately, this definition of program Level is not

OdrticuLarly useful since it is difficult (as discussed

aoave) to determine exactly a program's unique potential

operand count or its potential volume V* . Desiring

to be able to measure program Level even if these quantities

were unavailable, Halstead conjectured that an estimateg

2r2era j_ C , defined as

C (
=  * / nlI * / N2 )

= (2 / ) * ( I N ) ,

could be measured directly from an implementation alone,

without a specification or the unique potential operand

count l 2 * * With only limited evidence supporting the

validity of this estimate, the theory makes the qualified

claim that

,.. for many purposes L and C may be used

interchangeably to specify the level at which a program

has oeen implemented, at Least for smaller programs."

%Lthough most software science studies (e.g., CElshoft 76;

Love & Cowman 76; Curtis et al. 79)) have had no choice but

to rely upon this "program Level prediction equation" to

calculate the derived properties, the program level

estimator C has been criticized pubticaLLy COldehoeft 77]

for unsatisfactory behavior under certain conditions. The

ouestionable validity of this prediction equation is the

principal motivation for considering the two alternative

metnous of calculation discussed below.
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In any event, the theory employs C internally,

defining in~j~jj2tD i IQDatOl 1 as
I = C * V

and oroposing it as a measure of "how much is said" in an

aLgorithm or program (i.e., its information content). This

intelligence content quantity represents the amount of

detail expressed in an implementation but weiGhteo by its

level of expression. ey definition, I is determinaote

from an impLementaion aLone. If there is a strong

relationship between L and C , intelligence content I

would be approximately equat to potential volume V* * In

fact, Hatstead originally demonstrated that the removal of

program "impurities" (as described above) consistently

imoroved the numerical agreement between V* and I *

Normalizing the degree of discrepancy between these two

Quantities, the %DIFFERENCE(V*,I) aspect, calculated as

(II - V*|) / (v*)

may be interoreted as another possible software quality

measure, according to the theory.

The ta eL X is defined as

Lk = V*

X L L * V

V* V* I V

and claims to quantify the popular intuitive concept known

by the same name. The theory suggests that X should

raiain relatively constant for any particular implementation

Language white the implemented algorithm itself is allowed

to vary. Empirical evidence from a carefully constructed

set of programs, each implemented in several common

crogramming tanguages, indicated that the ordering of mean

values for X (which ranged from about 0.8 for assemoly

Language to about 1.6 for PL/1) concurred exactly with the

generally accepted intuitive ordering of the Languages

! hemse t yes.
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The effort E is definea as

E =V *D

V L

= V * V I V(

but this Quantity does not purport to measure development

effort in the usual sense. Rather, the theory originally

restricted

S.g.. the concept of programming effort to be the mental

activity required to reduce a preconceived algorithm to

an actual implementation in a Language in which the

imptementor (writer) is fluent ...s

According to further elaooration of the theory [Gordon 793,

this property represents the effort required (under iueat

conditions) to comprehend an implementation rather than to

produce it; E may tnus be interpreted as a measure of

program clarity. The effort property is considered to have

the dimension either of bits or of "elementary mental

discriminations." Borrowing from research in psychology#

the theory converts this amount of mental effort into an

externally observable duration of time, defining the

estiated lime T as
T" = E / S

where S is the so-called Stroud rate, i.e., the numoer of

"elementary mental discriminations" made by a programmer

(comprehender) per second. Psychologists had shown that

5 < S < 20 and Halstead determined empirically that S = 18

was a reasonable value.

Finally, the theory purports to quantify one other

Pxternally observable property, namely, the total number of

"oelivered" bugs in an implementation. The ttj1i*Sj. j

property is defined as

S=L E / E
0

VIE
0

where E is defined as "the mean number of elementary
o
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mental discriminations between potential errors in
programming." The theory argues that E 3000 is a

0
reasonable value. This number of bugs may be interpreted as

either the expected number of errors remaining in a

delivered program or the number of errors observeo during

program testing; both interpretations have received some

empirical support.

3ecause the validity of the "program level prediction

equation" is suspect (as discussed above), this study

emoloyed two aifferent methods for calculating software

science quantities: one relies directly upon this estimate,

the other does not.

ooth methods calculate exact values for some derived

properties via their defining formulas directly from the

imolementation's basic parameters* The methods are

therefore identical with regard to the following measured

aspects: VOCABULARY, LENGTH, ESTIMATED LENGTH,

%DIFFERENCE(NdA), VOLUME9 INTELLIGENCE CONTENT* and

ESTJ'AATED BUGS. 3ut, because reasonable values for unique

cotential operand counts are generally unavailable (from

either the specification or the implementation) for programs

of the size considered in this studyt both methods of

calculation can only approximate the remaining derivea

properties by relying upon various estimates. Due to the

intrinsically high degree of interrelationship among the

softare science quantities, it generally suffices to

approximate just one additional derived property via some

estimdtion technique; the remaining derived properties can

then all be approximated in turn via their defining formulas

from the known exact values plus the estimated value. The

methods therefore differ in their choice of Quantity to be
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estiTated, in their estimation technique, and with rejard to

the following measured aspects: PROGRAm LEVEL, DIFFICULTY,

'DTEI!TIAL VOLUME, %DIFFERENCE(V*,l), LANGUAGE LEVEL, EFFORT,

and ESTIMATED TIME.

The first method relies upon a "theoretical" estimation

of the program Level quantity. The estimated program level

C is calculated directly from the program-s implementation

vi3 its delining formula and then substituted as an

aporoximation for the (true) program Level L . Under this

methoo the exact value for intelligence content I is, by

definition, always equal to the approximate value for

ootential volume V* ; hence it is pointless to examine the

'YDIFFEPENCE(V*,I) aspect under this method of calculation.

The second method relies upon an "empirical" estimation

of the language level quantity. A programos language level

is approximated as the mean value of estimates for tIe

language Levels of the segments comprising the program. An

estimate of each segment's Language level can be calculated

directly from the implementation (via the defining formulas

for X , , and V ), using an estimate of the segment's

unique potential operand count Tj 2 in addition to the

exact values of the segment's other basic parameters N1 ,

N 2 , T11 , an-d r 2 . The unique potential operand estimate

is obtained by counting operands that are busy-on-entry or

tusy-on-exit (as discussed above); this technique seems

Quite reasonaole when applied to segments, most of which are

smatt enough. Use of the mean estimate for X across the

individual segments of an entire program was inspired by the

exoerimental treatment of Language level given in Halstead's

book. Under this method of calculation, all of the derived

croperties defined above are distinct and nonredundantly

calculated.
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This chapter describes the Steps taken to guide the

olanning, execution, and analysis of the experimental

investigation reported in this dissertation. The

investi3ative methodology outlined here was devised as a

vehicle for research in software engineering. It relies

upon established principles and techniques for scientific

research: emoiricat study, controlled experimentation, and

statist ica ( analysis.

The central feature of the investigative methodology is

a "differentiation-among-groups-by-aspects" paradigm. The

research goal is to answer the question, what differences

exist among the treatment groups (which represent different

programming environments) as indicated by differences on

measureo aspects (which reflect quantitative characteristics

of soft.are phenomena)? This use of "difference

discrimination" as the analytical technique dictates a

statistical model of homogeneity hypothesis testing that

influences nearly every element of the investigative

met hoaoloqy.

Other analytical techniques could have been employed:

estimation of the magnitude of differences between

experimental treatments#

correlations between measured aspects across all

exaerimnental treatments,

multivariate analysis (rather than multiple univariate

analyses in DaralLeL, as is the case here), or

factor analysis (breakoown of variance in one aspect

among the other measured aspects),

to name a few examples. These are useful techniques and may

be used at a Later time to answer other research questions.

75



CHAPTER VI

For tne present investiojtion, difference discrimination was

Chosen as a reasonable "first-cut" probe of the empirical

data collected for the research project; by taking this

conservative approach, information may be obtained to help

guide more refined probes in the future.

ALthough the methodology is built around running an

exneriment, collecting data, and making Statistical tests,

these activities (i.e., the execution phase) Play a small

rote within the overall investigative methodology, in

comparison to the planning and analysis phases. This is

readily apparent from the schematic in Figure 2, which

charts some of the relationships among the various elements

(or steps) of the investigative methodology. Another

feature of the investigative met hodology is the careful

distinction made during the analysis phase between objective

results (the empirical scores for the metrics and the

statistical conclusions they infer) and subjective results

(interpretations of the objective results in Light of

intuition, research goals, etc.).

The remainder of this chapter outlines the overall

methoa by defining each step and discussing how it was

apolied. Further details of certain steps are given within

other chapters of the dissertation, as follows:
-tep 5 Research Frameworks Chapter VIII

Step 6 Experimental Design Chapter III

Step 7 Collecteo Data Chapter III

Step 10 Statistical Conclusions Chapter VII

Step 11 Research Interpretations Chapter VIII

Step 1: 29fios 2f 1I1r1s

severaL questions of interest were initiated and

refined so that answers wight be given in the form of
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statistical conclusions and research interpretations.

Cuestions were formulate on the basis of several concerns:

(1) software oeveLopment rather than software maintenance,

(2) a desire to assess the effectiveness of disciplined team

proiramming, in comparison to undisciplined team programming

and individual programming, (3) quantitatively measurable

asoects of the process and product, and (4) the analytical

tecnnique of difference discrimination. The questions of

interest took the final form, "During software development,

what comparisons between the effects of the three

programming environments,

(a) individual programming under an ad hoc approach,

(b) team programming under an ad hoc approach,

(c) team programming under a disciplined methodology,

appear as differences in quantitatively measurable aspects

of the software development process and product?

Furthermore, what kind of differences are exhibited and what

is the airection of these differences?"

Step 2: Research HYpothCs91

Since the investigative methodology involves hypothesis

testing, it is necessary to have fairly precise statements,

catled research hypotheses, which are to be either supported

or refuted by the evidence. The second step in the method

was to formulate these research hypotheses, disjoint pairs

designated null and alternative, from the questions of

interest.

A precise meaning was given to the notion of

°difference." The investigation considered both (a)

differences in central tendency or average value, and (b)

differences in variability around the central tendency, of

observed values of the quantifiable programming aspects. It

should be noted that this decision to examine both Location

7
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ani jiispersion comodrsons among the experimental groups

brought a pervasive duality to the entire investigation

(i.e., two sets of statistical tests, two sets of

statistical results, two sets of conclusions, etc.--always

in parallel and independent of each other), since it

addresses both the glctar~z and tne 2reidt1iJiitZ of

behavior under the experimental treatments.

Some vagueness was removed regarding the size of the

particular programming task bY making explicit the implicit

restriction that completion of the task not be beyond the

caoability of a single programmer working alone for a

reasonaole period of time. Additionally, a large set of

programming aspects were specified; they are discusseo in

Chapters IV and V. For each programming aspect there were

si-nilar questions of interest, similar research hypotheses

and similar experiments conducted in parallel.

The schema for the research hypotheses may be stated as

"In the context of a one-person-do-able software development

project, there < is not I is > a difference in the

< location I dispersion > of the measurements on programming

asoect < X > between individuals (AI), ad hoc teams (AT),

and disciplined teams (DT)." For each programming aspect

X' in the set under consideration, this schema generates

two pairs of nondirectional research hypotheses, aepending

upon the selection of 'is not' or 'is' corresponding to the

null and alternative hypothesis, anu the selection of

'Location' or 'disoersion' corresponding to the type of

dif ference.

Step 3: SItaitical Mode l

The choice of a statistical mooeL makes explicit

various assumptions regarding the experimental design, the

--. . . .-- .. .. . x .. . . . .: . . . i il~ l [ i iii ~ , ... .L . .-7. . . .. .=
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deoenaent variabtles, the underlying population

distributions, etc. because the study involves a

ho-nogeneity-of-populations problem with shift and spread

attern3tives, the multi-sample model used here requires the

fot lowing: independent populations, independent and random

sampling within each population, continuous underlying

distributions for each population, homoscedasticity (equal

variances) of underlying distributions, and interval scale

of measurement [Conover 71t pp. 65-0 7 1 for each programming

asoect. Although ranoom sampling was not explicitly

achieved in this study by rigorous sampling proceoures, it

was nonetheless assumed on the basis of the apparent

reoresentativeness of the subject pool and the Lack of

oovious reasons to doubt otherwise. Due to the small sample

sizes, the unknown shape of the underlying distrioutions,

anJ the partially exploratory nature of the study, a

nonparametric statistical model was used.

whenever statistics is emoloyed to "prove" that some

systematic effect--in this case, a difference among tne

groups--exists, it is imoortant to measure the risk of

error. This is usually done oy reporting a significance

level [Conover 71, p. 79), which represents the

prooability of deciding that a systematic effect exists when

in fact it does not. in the model, the hypothesis testing

for each programming aspect was regarded as a separate

iniepenoent experiment. Consequently, the significance

level is controlled and reported experimentwise (i.e., per

asoect). While the assunption of independence between such

exoeriments is not entirely supportable, this procedure is

valid as Long as statistical inferences that couple two or

more of the orogramming aspects are avoided or prooerly

qualified. In this study, statements regarding

interrelationships among aspects are made only within the

interpretations in Chapter VIII.
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Step ,.: IIIIJ1iiia _HY2ohese

The research hypotheses must be translated into

statistically tractable form, called statistical hypotheses.

A correspondence, governed oy the statistical model, exists

between application-oriented notions in the research

hyootheses (e.g., typical performance of a programming team

under the disciplined methodology) and mathematical notions

in the statistical hypotheses (e.g., expecteo value of a

raido:n variable defined Over the population from which the

disciplined teams are a representative samole). Generally

speaking, only certain mathematical statements involving

pairs of populations are statistically tractable, in the

sense that standard statistical procedures are applicable.

St3tements that are not directly tractatle may be decomposed

into tractable (sub)components whose results are properly

recomoined after having been decided individually.

In this study, the research hypotheses are concerneo

with ,irectionaL differences among three programming

environments. Since the corresponding mathematical

st3tements are not directly tractable, they were aecomposeo

into the set of seven statistical hypotheses pairs shown

below. As a shorthand notation for longer English

sentences, symbolic "equations" are useo to express these

statistical hypotneses. The - symbol denotes negation.

The + symbol oenotes pooling. The = , * , ano <

syvmbols indicate comparisons on the basis of either the

location or dispersion of the dependent variables.

The hypotheses Pair

null : p], rC oIiive:

Al = AT = DT -(tl = AT = DT)

adiresses the existence of an overall difference amon6 the

groups. However, due to the weak nondirectional

90
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alternative, it cannot indicate which groups are different

or in what uirection a difference ties. Standard

statistical practice prescrioes that a successful test for

overall difference among three or more groups be followed by

tests for pairwise differences. The hypotheses pairs

AI = AT AI $ AT or AI < AT or AT < AI

AT = DT AT t DT or AT < DT or DT < AT

Al = IT Al * DT or Al < DT or DT < Al

aaIress the existence and direction of pairwise differences

between groups. The results of these pairwise comparisions

were used to refine the overall comparison. Data collected

for a set of experiments may often De legitimately reused to

"simulate" other closely related experiments, by combining

certain samples together and ignoring the original

distinction(s) between them. It is meaningful, in the

context of this study's experimental design, to compare any

two groups pooled against the third since (1) Al and AT are

both undisciplined, while DT is disciplined; (2) AT and OT

are both teams, and Al is individuals; and (3) uncer the

assumption that disciplined teams behave like individuals--

which is part of the study's basic premise, DT and Al can be

pooLed and compared with AT acting as a control group. The

hyootneses pairs

null : allgrelalive:

AI+AT = DT AI+AT * DT or AI+AT < DT or DT < AI+AT

AT DT = Al AT*DT * Al or AT+DT < Al or AI < AT+DT

AI+DT = AT AI+DT 0 AT or AI*DT < AT or AT < AI+DT

adiress the existence and direction of such oocled

differences. The results of these pooled comparisons were

useo to corrooate the overall and pairwise comparisons.

Thus, for each orogramming aspect, the research

hyoutheses pair corresponds to seven different pairs (null

and alternative) of statistical hypotheses. The results of
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*estin- each set of seven h ypotheses must be abstracted and

or ar"lzed into One %titisticak conctu% ion t sin the first

research framework discussei in the next steo.

The research frameworks provide the necessary

organizational basis for abstracting ano conceptualizing the

massive volume of statistical hypotheses (and statistical

results thdt follow) into a smaller and more intellectually

'ana eaole set of conclusions. Three separate research

fr3meworks have been chosen: (1) the framework of possitle

overall comparison outcomes for a given programming aspect,

(2) the framework of dependencies and intuitive

relationships among the various programming aspects

consiuered, and (3) the framework of basic suppositions

regarding expected effects of the exoerimental treatments on

the comparison outcomes for the entire set of programming

asoects° The first framework is employed in the statistical

conclusions step because it can be applied in a

statistically tractaole manner, while the remaining two

frameworks are reserved for employment in the research

interpretations step since they are not statistically

tr3ctable and involve subjective judgement.

Since a finite set of three different programminj

environments (Al, AT, and DT) are being compared, there

exists the following finite set of thirteen possible overall

comparison outcomes for each aspect considered:
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A I AT = DT

At < A T DT Al < AT < DT
Al AT z DT

AT = DT < A J At < DT < AT

AT < DT = Ar AT < DT < Al
AT $ DT = At Al # AT DT

DT = Al < AT AT < At < DT

DT < Al = AT' DT < At < AT
DT A Al = AT

Ar = AT < DT DT < AT < AI

There is a hierarchical Lattice of increasing separation ano

directionality among these possible overall comparison

outcomes as shown in Figure 3. These thirteen possible

overall comparison outcomes comprise the first research

framework and may be viewed as providing a complete "answer

space" for the questions of interest. It is clear that any

consistent set of two-way comparisons (such as represented

in the statistical hypotheses or statistical results) may be

associated with a unique one of these three-way comparisons.

this framework is the basis for organizing and condensing

the seven statistical results into one statistical

conclusion for each programming aspect considered.

Since a large set of interrelated programming a3pects

are being examined, it would be desirable to summarize many

of the "per aspect" hypotheses and results into statements

which refer to several aspects simultaneously. For example,

average number of statements per segment is ore aspect

directly dependent on two other aspects: number of segments

ani number of statements. Other interrelationships are more

intuitive, Less tractable, or only suspected, for example,

the "trade-off" between global variables and formal

parameters. A simple classification of the programming

aspects into groups of intuitively related aspects at least

orovices a framework for jointly interpreting the

corresponding statistical conclusions in light of the

unierlying issues by which the aspects themselves are

related. The programming aspects considered in this study



FIGURE 3

figure 3. 1 Lattice 2f Possible ftjz~aSguj. Daim I=r Three-May QaQartn

I AX.AT*DT (null)

S&<AT-DT AT.iT(AI , -AI DT.AV(AT ' DT<AI.AT AI.AT(DT' (partially
- - - - ,- ' differentiated)

AIk (&T(DY Al(bT[(AT &"T<!< AX T(AX<DCT D'Q1IAT OT<AT<AI (cm ~te.
AUMVT HOUR MOTO MAI DUAVT IM AX Oosietely

" , differentiated)

M.S. The circles indicate which directional outcomes correspond to the same nondirectional outcome.

Figure 3.2 1-ttJlnn 2L Pgansble Handireaninati QWaC2h J= Thrueg-ay oanison

Al - AT - DT (null)

At d AT x DT AT d DT a AI DT i At a AT (partially

differentiated)

At J AT d OT (compLetely

differeptiated)
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were classified according to a particular set of nine

higher-Level proqramming issues (such as data variabLe

organization, for example); details are given in Chapter

Viii. This second research framework is the oasis for

aostractinc and interpreting what the study's finoingi

inJicate about these higher-Level programming issues, as

well as explicitly mentioning several individual

relationships among the orogramming aspects and their

conclusions.

Since the design of the experiments, the choice of

treatments, etc., were at least partially motivated by

certain general beliefs regarding software development

(e.g., "disciplined methodology reduces software oevelopment

costs"), it should be possible to explicitly state what

comparison outcomes among the experimental treatments were

exoected a priori for which programming aspects. A list of

preplanned expectations (so-called "basic suppositions") for

thue outcomes of each asoect's experiment would provide a

frame.ork for evaluating how well the experimental findings

as a whole support the underlying general beliefs (oy

comparing the actual outcomes with the basic suppositions

across all the programming aspects). Such a list of oasic

suopositions was conceived prior to conducting the

exoeriments, and it constitutes the third research

framework; details are given in Chapter VIII. This

framework is the basis for interpreting the study's findings

as evidence in favor of the basic suppositions ano general

hetiefs.

step 6: r±xDnpi DeitQ

The experimental design is the plan according to which

the experiment is actually executed. It is based upon the

st3tistical model and deals with practical'issues such as
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exoerimental units, treatments, local control, etc. The

e xerimentat design employed for this study has been

Jiscussed in considerable detail in Chapter Ill.

Step 7 : Co~~ LLF1. fl

The pertinent data to carry out the experimental design

was collected and orocessed to yield the information to

which the statistical test procedures were aoplied. Some

details of these activities have been given in Chapter III.

A statistical test oroceaure is a decision mechanism,

founded upon Oeneral principles of mathematical probaoility

and combinatorics and upon a specific statistical model

(i.e., requiring certain assumptions), which is used to

convert the statistical hypotheses together with the

calected data into the statistical results. As dictated by

the statistical model, the statistical tests used in the

study were nonparametric tests of homogeneity of populations

ag3inst shift alternatives for small samples. Nonparametric

tests are slightly ,more conservative (in rejecting the null

hyoothesis) than their parametric counterparts;

nonparametric tests generally use the ordinal ranks

associated with a Linear ordering of a set of scores, rather

tnan the scores themselves, in their computational formulas.

!n particular, the standard Kruskal-wallis H-test [Siegel

56, pp. 184-193] and Mann-Whitney U-test [Siegel 56, pp.

115-127) were employed in the statistical results step.

Ry3n's Method of Adjusted Significance Levels [Kirk 6d, p.

'7, pp. 495-497), a standard procedure for controlling the

exoeri'nentwise significance level when several tests are

verfornied on the same scores as one experiment, was also

emoloyed in the statistical conclusions step.

kR
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The Kruskal-wallis test is used in three-sample

situations to test an X = Y = Z null hypothesis; its test

St3tistic is comouted as

M = 12*[(Rx2 /nx)+(Ry2 /ny)+(Rz2 /nz)]/[n*(n+l)) - 3a(n+1)

where Rx , Ry , and Rz are the respective sums of the

ranks for scores from the x, Y, and Z samples; n equals

nx+ny+nz where nx , ny , ano nz are the respective

sample sizes. The Mann-,Whitney test is used in two-sample

situations to test an X = Y null hypothesis; its test

St3tiStic is computed a-

U = min[ nx*ny + nx*(nx+1)/2 - Px
ny*nx + ny*(ny+1I/? - Ry

wnere Rx , Ry , nx , 3nd ny are defined as before.

For every statistical test, there exists a one-to-one

madding, usually given in statistical tables, between the

test statistic--a value completely determined by the sample

data scores--and the critical Level. The critical level

[Conover 71, p. 81) is defined as the minimum significance

level at which the statistical test procedure would allow

the nutL hypothesis to be rejected (in favor of the

alternative) for the given sample data. Thus critical level

reoresents a concise standarized way to state the full

resjlt of any statistical test procedure. Two-tailed

rejection regions are apolied for tests involving

n ondirectional alternative hypotheses, and one-tailed

rejection regions are apolied for tests involving

directiunal alternative hypotheses, so that the statea

critical level always pertains airectly to the stated

alternative hypothesis. A decision to reject the null

hypothesis and accept the alternative is mandated if the

critical level is low enough to be tolerated; otherwise a

decision to retain the null hypothesis is mane.

7he Ryan's procedure is used in situations involving

mattiple pairwise comparisons, in order to properly account
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for the fact that each pairwise test is made in conjunction

with the others, using the same sample data. The individual

critical Levels 6 obtained for each pairwise test in

isolation are adjusted to proper experimentwise critical

Levels & via the formula

6t = [(r*l)*k/2] *

where k is the total number of samples; and r is the

numner of (other) samples whose rank means fall between the

rank means of the particular pair of samples oeing compared.

A simple "minimax" step--taking the maximum of the several

aajusted pairwise critical levels, plus the overall

comparison critical level, which are all minimum

significance Levels--completes the procedure, yieldin a

sin;le critical level associated jointly with the overall

and pairwise comparisons.

These tests and procedures apply straightforwardly when

differences in location are considered. A slight

mojification makes them applicable for differences in

dispersion: prior to ranking, each score value is simply

reDLacea by its absolute deviation from the corresponding

within-group sample median [C'emenyi et al. 77, pp. 266-270).

It should be noted that this modification results in only an

aporoximate method for solving a tough statistical problem,

namely, testing whether one population is more variable than

another [Nemenyi et al. 77, op. 279-283J. The modification

is not statistically valid in the general case (it weakens

the power of the test procedures and can yield inaccurate

critical Levels when testiny for dispersion differences),

but every other available method also has serious

limitations. This method has been shown (empirically via

monte Carlo techniques) to possess reasonable accuracy, as

long as the underlying distributions are fairly symmetrical,

and is readily adapted to the study's three-way comparison

situation.

L=, a7,, ,
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Step C:' aijjjPu~

statistical result is essentially a decision reached

by aopLying a statistical test procedure to the set of

collected and refined data, regarding which one of the

corresponding pair (null, alternative) of statistical

hyootheses is indeed supoorted by that oata. For each pair

of statistical hypotheses, there is one statistical result

coisisting of four components: (1) the null hypothesis

itself; (2) the alternative hypothesis itself; (3) the

critical level, stated as a prouability value between 0 and

1; a-a (4) a decision either to retain the null hypothesis

or to reject it in favor of (i.e., accept) the alternative

hyoothesis.

y convention, the null hypothesis is that no

systematic difference apoears to exist, and the alternative

hypothesis purports that some systematic difference exists.

The critical levet is associated with erroneously acceoting

the alternative hypothesis (i.e., claiming a systematic

lifference when none in fact exits). The decision to retain

or reject is reached on the basis of some tolerable level of

significance, with which the critical level is compared to

see if it is Low enough. In cases where a null hypothesis

is relected, the appropriate directional alternative

hypothesis (if any) is used to indicate the direction of the

systematic difference, as determined by direct observation

from the sample medians in conjunction with a one-tailea

test.

Conventional practice is to fix an arbitrary

,i nificance level (e.g., 0.05 or 0.01) in advance, to be

used as the tolerable level; critical levels then serve only

as steoping-stonps towarl reaching decisions and are not

reoorted. For this partially exploratory study, it wiS

Q.
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,ltm,.j morv appropriate to fix a toleraole level only for

tfie rurpo-,v of d screening decision (simply to purnie those

results witn intolerably hivh critical levels) anu to

ex:)licitLy attach any surviving critical Level to each

st3tistical result. This unconventional practice yields

statisticaL results in a more meaningful and flexible form,

since the significance or error risk of each result may be

assessea individually, and results at other more stringent

significance levels may oe easily determined. Furthermore,

the necessary information is retained for properly

recomoining multiple related results on an experiment.,ise

basis in the statistical conclusions step.

The toleraole level of significance used throughout

this study to sceen critical levels was fixed at under 0.20.

, lthough fairly high for a confirmatory study, it is

re3sonabLe for a partially exploratory study, such as this

one, seeking to discover even slight trends in the data. A

critical level of 0.20 means that the odds of obtaining test

scores exhibiting the same degree of difference, due to

raiaom chance fluctuations alone, are one in five.

As an example, the seven statistical results for

location comoarisons on the programming aspect STATEM4ENT

TY3E COUNTS\IF are shown below. (N.9. The asterisks will be

exolained in Steo 10.)

null alternative critical (screening)

At = AT = DT -(AI = AT = DT) .06" reject
Al = AT AI < AT .046 reject
Al = DT Al * DT >.99Q ret ain
AT = OT DT < AT .011 reject

AI+AT = DT DT < AI+AT 38 .3 reject *
AI+DT = AT AI+DT < AT .009 reject
AT+DT = Al AT+DT I AI .335 retain *

"oserve that the stated decisions simply reflect the

aoolication of the 0.20 tolerable level to the stated

critical levels. Oesults under more stringent Levels of

,rignificance can be easily oetermined by simply aooLying a

L.o
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lo.er tolerabLe level to form the decisions; e.g., at the

?.]5 sijnificance ltvel, only the Al < AT, DT < AT, and

"1+ T < AT alternative hypotheses would be accepted; only

the AI+D T  < AT hypothesis would be accepted at the 0.01

level

ste 1': tatistical Conclusions

The volume of statistical results are organized and

condensed into StatiStical conclusions according to tne

Drearranged researchi fraaework(s). A statistical conclusion

is an austraction of several statistical results, but it

retains the same statistical character, having been derived

via statistically tractanle methods and possessing an

associated critical level.

The first research framework mentioned aoove was

emoloyed to reduce the seven statistical results (with seven

individual critical levels) for each programming aspect to a

single statistical conclusion (with one overall critical

level) for that aspect. The statement portion of a

st3tistical conclusion is simply one of the thirteen

possible overall comparison outcomes. Each overall

comparison outcome is associatec with a particular set of

statistical results whose outcomes support the overall

comparison outcome in a natural way. For examole (reading

*r:m the fifth row of the chart in Figure 4), the

)T = AI < AT conclusion is associated with the following

results:

reject AI = AT DT in favor of -(AI = AT = OT),

reject Al = A7 in favor of AI < AT,

retain AI = DT,

reje.ct AT = DT in favor of DT < AT, and

reject AI D = AT in 4avor of AI+DT < AT.

Siice the other two comp3riscns (AI+AT versus AT, AT+L T



CHAPTER VI

versus AI) are in a sense orthogonal to the overall

comparison outcome (DT = AI < AT), their results are

considered irrelevant to this conclusion. The chart in

Figure 4 shows exactly which results are associated with

Pach concLusion: the relevant comparisons, the null

hyDotneses to be retained, and the alternative hypotheses to

te accepted. The other oortion of d statistical conclusion

is the critical Level associated with erroneously accepting

the statement portion. It is computed from the individual

critical Levels of certain germane results.

A simple algorithm based on the chart in Figure 4 was

useo to generate the statistical conclusions (and compute

the overall critical Level) automatically from the

st3tistical results. For each programming aspect, the

algorithm compared the set of actual results obtained for

t e seven statistical hyootheses pairs to the set of results

associated (in the chart) with each conclusion, searcning

for a match. Ryan's procedure was used to properly combine

the individual critical levels for the overall result and

the relevant pairwise results, by adjusting them via the

formula and then taking their maximum. The critical levels

for the relevant pooled results were then factoreu, by a

sivple formula based on the multiplicative rule for tne

joint probability of independent events.

Cnntinuing the examole startea in Steo 9, the

statistical results shown there for location comparisons on

the STATEMENT TYPE COUNTS\IF aspect are reduced to the

statistical conclusion DT = Al < AT with .07? critical level

overall. The five results not marked with an asterisK in

Step 9 match the five results associated above with the

DT = Al < AT outcome. (Note that the other two marked

results represent comparisons that are irrelevant to this

concl,,sion.) The .04b and .011 critical levels for tne two

?,I
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odiriise differences are adjusted to .070 and .033t

respectively, and the maximum among those aojusteo values

anJ the .063 overall difference critical level is .07.. The

relevant pooled comparison critical level of .008 is

factored in by taking the complement of the products of the

complement s:

S- (1- .06Q)*(1 - .008)] =072

Thus, the statistical conclusions are in one-to-one

correspondence with the research hypotheses and provide

concise answers on a "per aspect" basis to the questions of

interest. Further details and complete listing of the

statistical conclusions for this study are presented in

Chapter VII.

Ste p 11: R a LnIe1tr Ii 201

The final step in the method is to interpret the

statistical conclusions in view of any remaining research

framework(s), the researcher's intuitive understanding, and

the work of other researche rs. These research

interpretations provide the opportunity to augment the

o:jective findings of the study with the researcher's own

professional judgment and insight. The secono and thiro

research frameworks mentioned above--namely, the intuitive

relationships among the various programming aspects and the

basic suppositions governing their expected outcomes--were

consicered important for this purpose. However these

particular research frameworks can only be utilized for the

research interpretations, since they are not amenable to

rigorous manipulation. Nonetheless, within these frameworks

based upon intuitions about the software metrics and

programming environments unoer consideration, the study

hears some of its most interesting results and implications.

Complete details ano discussion of the research
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interpretations of this study appear in Chapter VIII.



CHAPTFR VII

This chapter reports the objective results of the

stidy , namely, the statistical conclusions for each

orogramming aspect considered. In keeping with the

emoiricat and statistical character of these conclusions,

the tone of discussion here is purposely somewhat

disinterested and analytical. ALL interpretive discussion

is deferred to Chapter VIII, in accordance with the

invest i gat ive methodology.

Each statistical conclusion is expressed in the concise

form of a three-way comparison outcome "equation." It

states any observed differencest ano the directions thereof,

among the programming environments represented by the three

groups examined in the study: ad hoc inoiyiduals (AI), ad

hoc teams (AT), and disciplined teams (DT). The equality

AI = AT = DT expresses the null outcome that there is no

systemat.c difference among the groups. An inequaLitY,

e.j., Al < AT = DT or DT < Al < AT, expresses a non-null (or

alternative) outcome that there are certain systematic

difference(s) among the groups in stateo direction(s). A

critical level value is also associated with each non-nutL

(or alternative) outcome, indicatinj its individual

retiarility. T his value is the oroDability of having

erroneously rejected the nult conclusion in favor of the

alternative; it also provides a relative index of how

pronounced the differences were in the sample data.

The remainder of this chapter consists of (a)

Presenting the full set of conclusions, (b) evaLuatin, their

imlact as a whote, (c) exposing a "relaxed differentiation"

view of the conclusions, (d) exposing a "directionless" view

of the conclusions, and (e) individually highlighting a few

94



CHAPTER VII

of the more noteworthy conclusions.

:r2sentation

The complete set of statistical conclusions for both

Location and dispersion comparisons appears in Table 2

arranged oy Programming 3spect. Instances of non-null (or

alternative) conclusions--those indicating some distinction

among the groups on the basis of a measured programming

asoect--are Listed by outcome in Taoles 4.1 (for Location

conparisons) and 4.2 (for dispersion comparisons).

Examination of Table 2 immediately demonstrates that a

large number of the programming aspects considereo in this

study, especially product aspects, failed to show any

distinction between the groups. This tow "yield" is not

surprising, especially amonq product aspects, and may be

attributed to the partially exploratory nature of the study,

the small sample sizes, and the general coarseness of many

of tI'e aspects considered. The issue of these null outcome

occurrences and their significance is treated more

thoroughly in the next subsection, Impact Evaluation.

It is worth notingt however, that several of the null

conclusions may indicate characteristics inherent to the

apotication itself. As one example, the basic symbol-table/

scanner/parser/code-generator nature of a compiler strongly

influences the way the system is modularized and thus

practically determines the number of modules in the final

croduct (give or take sove occasional slight variation due

to other design decisions).

The collective impact of these statistical conclusions
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may be objectively evatuated according to the following

statistical principle [Tukey 69, pp. 34-953. Whenever a

series of statistical tests (or experiments) are made, all

at a fixed Level o4 significance (for exampLe, 0.10), a

corresoonding percentage (in the example, 10%) of the tests

are -xoected a priori to reject the null hypOtheSis in the

co-iplete absence of any true effect (i.e., due to chance

alDne). This expected rejection percentage provides j

conparative index of the true impact of the test results as

a ihole (in the example, a 25% actual rejection percentage

wojLJ indicate that a truel y significant effect, other than

chance alone, was operative).

The point here may be illustrated in terms of simple

coin-tossing experiments. The nature of statistics itself

dictates that, out of a series of 100 separate statistical

tests of a hypothetically fair coin at the 0.05 significance

level, roughly S of those tests would nonetheless indicate

that the coin was biased; if only 6 out of 110 tests of a

re3L coin indicate oias at the 0.05 level, those six results

have very little impact since the coin is behaving rather

unciaseoty over the full set of tests.

This same "multiplicity" prtnciole applies to the

st3tistic3L conclusions of the study, since they represent

the outcomes of a series of separate tests and were assumed

in the statistical model to be separate experiments. It is

aporoc.riate to evaluate the location ano dispersion results

seoarately, since they reflect two separate issues

(expectency and predictability) of software development

behavior. It is also aporopriate to evaluate the process

and product results separately. Finally, it is only fair to

evaluate the con'irmatory asoects as a distinct subset of

all :ispects examined, since they alone had been honestly

consiuered prior to collecting and analyzing the data.
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uetails of this impact evaluation for the study's

oojective results, oroken down into the appropriate

cateiories identified above# are presented in the following

ta:le. (This table is an excerpt from Table 3, which

orovides an extensive imoact evaluation, broken down

hierarchically according to all of the various dichotomies

ijentified for the programming aspects.) The evaluation was

oerformed at the OL = C.20 significance Level used for

screening purposes, hence the expected rejection percentage

for any category was 20%. For each category of aspects, the

taote gives the numoer of (nonredunoant) programming

asoects, the expected (roundea to whole numbers) and actual

numoers of rejections (of the null conclusion in favor of a

directional alternative), and the expected and actual

rejection oercentages. An asterisk marks those categories

demonstrating noticable statistical impact (i.e., actual

rejection oercentage welt above expected rejection

percentage).

----------..... 4.-----------. -------- -------------------------

category g 0 # ep ae:
-I .. . ..rej. % I %

-- - -- - -- - - - - ------- --------- 4----------------- -----.
lo cat ion 38C 51 1 0: j2: 1

oJrocess 109
confir-natrry only 6 1 6 20.0 10.0

oroduct 1 179 1 36 I 44 1 20.0 1 .4.6 1
confirmatory only 2 12 20.0 41.4

confirmatory only 35 1 18 1 200 14
-- - -- - - -- - - -- - - ----- -- ---------------------

I o uonly 179 38 4 ;1 200 Z2 1
confirmatory only 29 1 6 9 20.0 I 31.0 I'

confirmatory only 35 7200 25.7

----- 4-- -------------------------- ------------------

4: numoer of aspects
exp. I rej. : expected number of rejections
act. I rej. : actual number of rejections
exp. rej. : expected rejection percentage
act. rej. : actual rejection percentage

The tadte shows that the location results, dealing with

the expectency of software aevelopment behavior, oo have

st3tistical impact in several subcategories. Process

aspects have mori i.pact than product aspects on the whoLe,



TABLE 3

Table 3. ttisti-CAt MRaQi [. uttiYi20

4 4o: . . 4e°.l" ' '  4" .'o  4.' "
number expect.Iactuatf expect. actuaL.category of num. o hum. of reject. reject.
Iaspects reject. reject. oercent percentl

I location o189 1 38 53 1 20.0 1 z.O 1
I process 1 10 I 2 1 9 1 20.0 1 90.0 1*

I rudimentary 9 I 2 I 8 I 20.0 I 88.9 1*
confirmatory 5 1 1 5 20.0 100.0
xploratory 4 I 3 28.0 75.0

etaborat ive 1 0 1 20.0 100.0
confpratory 1 0 : 100.0
eptoratory C' 0 ~

confirmatory 6 1 08.0 108:8
exploratory 4 1 3 20.0 7

------ -- - -- -- -- -- -

ruoimentar 115 22 8
I conf irmaforyl 26 5 11 288 2o3

elaborative 64 13 22 0.0 34,.4
confirmatory 3 1 1 20.0 33.3 *
exploratory 61 12 21 20.0 34.5

confirmatory 1 29 6 12 1 20.0 1 41.4 I*
exploratory I 150 30 32 1 20.0 1 21.3 1

+.-----------------+----------------------4 --------------- -- 4

I rudimentary I 124 I 25 J 30 J 20.0 I 24.2 I
I confirmatory I 31 I 6 i 16 1 20.0 I 51.6 1*

elaborative 6 1 4 2 0

confirmatory 4 1 2 20.0 50.0 1*
exploratory I 61 I 12 l 21 20.0 1 3..5 1*

confirmatory 31 7 18 2 0 1 51.4 J*
xptora tory 154 31 35 0:- 22 .

Idisoersion 1 189 1 38 I 43 1 20.0 1 22.8 I
--- ----- ------ ----------------- -----------------------io rocet 10 I 2 1 2 88 I 1 I:

rudimentary 4 1 2 2 5
confirmatory 5 I 1 0 I 20.0 1 0.0 I

exploratory 9 I 0 0 20.0 0.0 1
confirmatory 6 I 1 I 20.0 1 0.0 1
exploratory 4 I 1 2 I 20.0 1 50.0 1*

------- --- ----------- .-- 4

I product 1 17Q 36 41 I 20.0 I 22.9 I
rudimentary I115 I 23 I 28 20.0 2 24.:3
confirmatory 26 5 I 20.0 30.8 *
exploratory 89 i1 20 20.0 22.5 I

1 elaborative 64 13 13 20.0 I 20.3
I confirmatory I 3 I 11I 11 20:0 I33:3I

expqoratory 61 12 12 20.0 19.7
conf irmatory 29 6 9 20.0 31.0 1*

I exploratory 1 150 I 30 32 I 20.0 I 21.3 I

I rudimentary 124 25 °30 i20.01 24.2
confirmatory 31 6 8 20 25.8
exploratory 93 19 22 20.0 23.7

elaborative f 65 13 13- 20 I
confirmatory 4 1 1 20.0 25:0

expLoratory 61 12 12 20.0 19.7
confi rmatory 35 7 9 20.0 25.7 1
exploratory 154 1 31 34 1 20.0 1 22.1 I
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but when tempered by consideration of tne listinction

!-et.een confirmatory and exploratory aspects, the stucy's

location results Dear strong statistical impact for buth

orocess and product. They are better explained as the

consequence of some true effect related to the experimental

treatments, rather than as a random phenomenon.

It is also clear from the table that the dispersion

results, dealing with the oredictaoility of software

developmnent behavior, have little statistical impact in

_eneral. This is due primarily to the aiminished power of

statistical orocedures usea to test for dispersion

differences, compounded y the small sample sizes involved

anJ tne coarseness of many of the programming aspects

themselves. The lack of strong statistical impact in this

area of the study does not mean that the dispersion issue is

unimportant or undeserving of research attention, but rather

that it is "a tougher nut to crack" than the location issue.

The study's dispersion results are still worth pursuing,

however, as possible hints of where differences might exist,

provided this disclaimer regarding their impact is heeded.

A Relaxed 2iffe rentjajtioQn iew

As described in Chaoter VI, the research framework of

possiole three-way comparison outcomes provided the basis

for converting the statistical results into the statistical

concl.usions. This framework has two innerent structural

characteristics that may be exploited to make additional

observations regarding the statistical conclusions. These

structural characteristics and the supplemental views of the

conclusions that they afford are described here and in the

next subsection.

The first structural characteristic is that each
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coipletely differentiated outcome is related to a specific

rair of partially differentiated outcomes, as shown in the

lattice of Figure !.1. For example, Al < AT < DTt a

completely differentiated outcome, naturally weakens to

either AI < AT = DT or Al = AT < DT, two partially

differentiated outcomes.

Eaci completely differentiated outcome consists of

three oairwise differences (AI < AT, AT < DT, AI < DT in the

ex3mole), while each partially differentiated outcome

consists of only two pairwise differences plus one pairwise

equality (Al < DT, AI < AT, AT = DT and AI < DT, AT < PT,

Al = AT in the example). The "outer" difference of the

completely differentiated outcome (Al < DT in the example)

is common to ooth partially differentiated outcomes, while

each partially differentiated outcome focuses attention on

one of the two "inner" differences (AI < AT and AT < DT in

the example) to the exclusion of the other "inner"

difference which is "relaxed" to an equality. Within a

statistical environment or model which places a premium on

cl3iming differences instead of equalities, a partially

differentiated outcome is a safer statement, containing less

error-prone information than a completely differentiated

outcome. Since these outcomes represent statistical

conclusions, the same data scores which support a completely

differentiated outcome at a certain critica.L Level also

s..pOort each of the two related partially differentiated

outcomes at tower critical Levels.

Thus, every completely differentiated conclusion may

also oe considered as two (more significant) partially

differentiated conclusions, each of these three conclusions

having equal ano complete statistical legitimacy. The

"outer" difference of a completely aifferentiated conclusion

is, of course, stronger than either of its two "inner"

99
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differences; but the strengths of the two "inner"

differences (relative to each other) will vary in accordance

with the data scores ano inoeed are reflected in the

significance Levels of the two corresponding partially

differentiated conclusions (relative to each other). Tables

5.1 and 5.2 give the details of this "relaxed

differentiation" analysis for each of the completely

differentiated conclusions found in the study, ana an

English paraphrase appears in the two paragraphs immediatetL

below. AlL of the partially differentiated conclusions

Listea in these tables shoulo be added to those presented in

Taoles 2 and 4; they deserve full consideration in any

analysis or interpretation of the study's findings.

Hooever, in the case that one of a partially differentiated

pair is noticeably stronger than the other, it is fair to

consider only the stronger one for the puroose of analysis

or interpretation dealing primarily with partially

differentiated outcomes, since the study is mainly concernzo

with the most pronounced difference affordea by each

asDect's data scores.

Un Location comparisons, four programming aspects

yielded completely differentiated conclusions. They are

"relaxed" to partially differentiated conclusions as

fol Lows:

1. From DT < AI < AT on the PROGRAM CHANGES aspect, the

DT < AI = AT conclusion dwarfs the DT = Al < AT

conclusion with respect to Level of significance.

2. The DT < AT difference is more pronounced than the

Al < DT difference from Ar < DT < AT on the LINES

aspect.

3. AT < DT < Al on the (SEGvENT,GLOBAL) USAGE PAIR RELATIVE

PERCE14T4GE\ENTRY asoect is more appropriately "relaxed"

to the AT < DT Al conclusion than to the AT = OT < Al

conclusion.
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4. The AT < DT and DT < AI differences from AT < DT < Al on

the (SEGMENT,GLOaAL) USAGE PAIR RELATIVE PERCENTAGE\

ENTRY\MODIFIED aspect are equally strong.

On dispersion comparisons, four programming aspects

yielded completely differentiated conclusions. They dre

"relaxed" to partially differentiated conclusions as

fotl Lows:

?. The DT < AI difference is much more pronounced than the

Al < AT aifference from DT < Al < AT on the MAXIMUM

UNIQUE COMPILATIONS FOR ANY ONE MODULE aspect.

2. From DT < Al < AT on the STATEMENT TYPE COUNTS\RETURN

aspect, the DT = Al < AT conclusion dwarfs the

DT < AI = AT conclusion with respect to Level of

si gni f icanc e.

!. AI < DT < AT on the (SEGMENTGLOBAL) POSSIBLE USAGE

PAIRS aspect is more appropriately "relaxed" to the

AI < AT = DT conclusion than to the DT = Al ( AT

conclusion.

4. The Al < DT difference is more pronounced than the

DT < AT difference from Al < DT < AT on the

(SEGMENTGLOBAL) POSSIBLE USAGE PAIRS\NONENTRY\

UNMODIFIED aspect.

A Direqtionis_ View

The second structural characteristic of the possible

outcome framework is that the outcomes may be classified

into another closely related set of directionless outcomes,

as shown in the lattice of Figure 3.2. For examole,

Al < AT = DT and AT = DT < AI, two directional partially

different iatea outcomes, both correspond to AI 0 AT = DT, a

nonairectional partially differentiated outcome. ALl six of

the directional completely differentiated outcomes

correspond to the single nondirectional completely

7~1
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lif fferent iated outCome Al A AT i DT.

iy emphasizing just the existence and not the direction

ot distinctions between the treatment groups, these

d1irectionless outcome categories focus attention on tne

original research issue of discovering which observaoke

programmina aspects differentiate among the three

prog,ramminq environments. In particular, there are three

nonairectional partially differentiated outcomes (each of

the form "one group different from the other two whicn are

similar"), and it is noteworthy to observe just what set of

orogra-ming aspects supports each of these basic

distinctions. (Table 4 is arranged so that the directional

distinctions listed there can be readily coalesced by eye

into airectionless categories.) It is revealing to note

that, with one exception, the directionLess distinctions on

location comparisons segregate cleanly along the process-

versus-product dichotomy Line: all of the product

distinctions fat into the Al A AT = DT or AT A DT = Al

categories, while the process distinctions consistently fall

into the DT * AI = AT category. Interestingly enough, the

one exception is that a number of the cyclomatic complexity

metric variations (which are product aspects) show the

DT $ AI = AT directionless outcome (which otherwise

ch3racterizes only process aspect distinctions).

The purpose of this concluding section is to point out

wh3t seem to be the "top ten" (well, eleven and nine) most

noteworthy conclusions from among the study's objective

results. These conclusions are interesting individually,

either because the programming aspect merits attention or

because the difference in its exvectency or predictability

is pronounced (as indicated by a Low critical siqnificance
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level) in the experimental sample data.

Noteworthy jOrjtjg distinctions are mentioned below.

1. According to the DT ( AI = AT outcome on the COMPUTEP

JCB STEPS aspect, the ois:iplined teams used very

noticeably fewer computer job steps (i.e., module

compilations, program executions, and miscellaneous joo

steps) than either the ad hoc individuals or the ad hoc

teams .

2. This same difference was apparent in the total number of

module compilations, the number of unique (i.e., not

identical to a previous compilation) module

compilations, the number of program executions, and the

number of essential job steps (i.e., unique module

compilations plus program executions), accoroing to the

OT < Al = AT outcomes on the COMPUTER JOB STEPS\MODULE

COMPILATION, COMPUTER JOB STEPS\MODULE COMPILATION\

UNIQUE, COMPUTER J03 STEPS\PROGRAM EXECUTION, and

COMPUTER JO STEPS\ESSENTIAL aspects, respectively.

3. According to the DT < Al = AT outcome on the PROGRAM

CHANGES aspect, the disciplined teams required fewer

textual revisions to build and debug the software than

the ad hoc individuals and the ad hoc teams.

4. There was a definite trend for the ad hoc individuals to

hveeproduced fewer total symbolic lines (including

co entst compiler directivest statementst

declaNQations, etc.) than the disciplined teams who

produced fewer than the ad hoc teams, according to the

Al < DT < AT outcome on the LINES aspect.

5. According to the AI < AT = DT outcome on the SEGMENTS

aspect, the ad hoc individuals organized their software

into noticeably fewer routines (i.e., functions or

procedures) than either the ad hoc teams or the

uisciplinea teams.

6. The ad hoc individuals aisplayed a trend toward having a
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yreater number ot executable statements per routine

than did either the ad hoc teams or the disciptineo

teams, according to the AT = DT < AI outcome On the

AVERAGE STATEMENTS OER SEGMENT aspect.

7. ~According to the DT = Al < AT outcomes on the STATEMENT

TYPE COUNTS\IF and STATEMENT TYPE PERCETAGE\IF

dspects, both the ad hoc individuals and the

uisciplinej teams coded noticeably fewer IF statem.ents

than the ad hoc teams, in terms of both total number

ana percentage of total statements.

'. According to the DT = Al < AT outcome on the DECISIONS

aspect, both the ad hoc individuals and the disciplinea

teams tended to code fewer decisions (i.e., IF, wHILE,

or CASE statements) than the aa hoc teams.

Q. both the ad hoc teams and the disciplined teams declarec

i noticeably Larger number of data variables (i.e.,

scalars or arrays of scalars) than the ad hoc

individuals, according to the AI < AT = DT outcome on

the DATA VARIABLES aspect.

13. According to the AT = DT < AI outcome on the DATA

VARIABLE SCOPE PERCENTAGES\NONGLOBAL\LOCAL asoect, the

ad hoc individuals had a larger percentage of local

variables compared to the total number of declared data

variables than either the ad hoc teams or the

discip)lined teams.

11. There was a slight trend for ooth the ad hoc

individuals and the disciolineu teams to have fewer

potential data bindings (i.e., possible communication

paths between segments via global variables, as allowed

oy the software's modutarization) than the aa hoc

teams, according to the DT = Al < AT outcome on the

(SEG:4ENTGLOBAL,SEGMENT) DATA bINDINGS\POSSIBLE aspect.

Noteworthy d!-J2P}rp_2in distinctions are mentioned below.

l. There was a noticeable difference in variability, with

I34
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the disciplined teams Less than the ad hoc individuals

Less than the ad hoc teams, in the maximum number of

unique compilations for any one moaule, according to

the DT < Al < AT outcome on the MAXIMUM UNIQUE

COMPILATIONS FOR ANY ONE m ODULE aspect.

"he ad hoc individuals exhibited noticeably greater

variation than either the ad hoc teams or the

oisciplined teams in the number of miscellaneous job

steps (i.e., auxiliary compilations or executions of

something other than the final software project),

according to the AT = DT < Al outcome on the COMPUTER

JOB STEPS\MISCELLANEOUS aspect.

3. According to the DT = Al < AT outcome on the AVERAGE

SEGmENTS PER MODULE aspect, the a, hoc individuals and

the disciplined teavs both exhibited noticeably Less

variation in the average number of routines per module
than the ad hoc teams.

4. According to the DT = Al < AT outcomes on the STATEMENT

TYPE COUNTS\RETURN and STATEMENT TYPE PERCENTAGES\

RETURN aspects, the ad hoc teams showed rather

noticeably greater variability in the number (both raw

count and normalized percentage) of RETURN statements

cooed than both the disciplined teams ana the ad hoc

individuals.

5. In the number of calls to orogrammer-defined routines,

the ad hoc individuals displayed noticeably greater

variation than both the ad hoc teams and the

disc ipLined teams, according to the AT = DT < AI

outcome on the INVOCATIONS\NONINTRINSIC aspect.

5. According to the DT < Al = AT outcome on the DATA

VARIABLES SCOPE PERCENTAGES\GLOSAL\NONENTRY\MODIFIED

aspect, the disciplined teams displayed noticeably

smaller variation than either the ad hoc individuals or

the ad hoc teams in the percentage of commonplace

(i.e., ordinary scooe and modified during execution)
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IObd t variables compared to tne total number of data

variatles ajeclared.

7. Tnh ad noc individuals displayed noticeanly Less

v3riation in the number of formal parameters passed by

reference than botn the ad hoc teams and the

disciplined teams, 3ccoroing to the Al < AT = DT

outcome on the DATA VARIA 3LE SCOPE CCUNTS\NONGLD6AL\

PARAMETER\REFERENCE aspect.

Q. According to the Al < DT < AT outcome on the

(SEG-ENT,GLOBAL) POSSIbLE USAGE PAIRS aspect, there was

a noticeable difference in variability, with the ad hoc

individuals less than the disciplined teams Less than

the ad hoc teams, for the total numoer of possible

segment-global usage pairs (i.e., occurrences of the

situation where a global variaule coulo be modified or

accessed by a segment).

Q. According to the DT = AI < AT outcome on the

(SEGMENT,GLOBAL,SEGMENT) DATA BINDINGS\POSSI8LE aspect,

the ad hoc teams tended toward greater variaoility than

either the ad hoc individuals or the disciplined teams

in the number of potential data bindings.
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VIII. INTERVRETI~. a_ SUL11

This chapter reports the interpretive results of the

stjdy, namely the research interpretations based on the

conclusions oresented in Chapter VII. The tone of

discussion here is purposely somewhat subjective and

opinionated, since the study's most important results are

derived from interpreting the experiment's immediate

finainas in view of the study's overall goals. These

interpretations also express the researcher's own estimation

of the study's implications and general import according to

his Drofessional intuitions about programming and software.

The interpretations presented here are neither

exhaustive nor unique. They only touch upon certain overall

issues and generally avoid attaching meaning to or giving

exolanation for individual aspects or outcomes. It is

anticipated that the reader and other researchers might

formulate additional or alternative interpretations of the

stidy's factual findings, using their own intuitive

juigments.

Tdo distinct sets of research interpretations are

discussed in the remainder of this chapter. The first set

states general trends in the conclusions according to the

basic suppositions of the study. The second set states

general trends in the conclusions according to a

classification of the programming aspects which reflects

certain abstract programming notions (e.g., cost,

modularity, data organizations, etc.).

The study's "basic suppositions" (or "hypotheses") are
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a set of simpleminned a priori expectations regaroing

dif ferences among the exoerimental programming environments

for location ano dispersion comparisons on process anc

prD,.uct aspects. These basic suppositions are stated in the

fol.owing table:

--------------------- ---------
jasic Suppositions I for Location Ifor Dispersioni

I Comparisons I Comparisons I
- ---- -- ----------------------- -----------------------------
I on Process Aspects I DT < AI = AT I DT < AI = AT I
---- --------------------------------------------

I I DT = At < ATe DT = AI < AT
I on Product Aspects I Ar A or

I AT < DT = AII AT < DT = AI
------------------------------------------------- -

The basic suppositions are founded upon "general

beliefs" regarding software phenomena, which had been

formulated oy the researcher prior to conducting the

experiment. These gener3L beliefs state that

(a) methodological discipline is the key influence on the

yeneral efficiency of the process;

(u) the disciplined methoaoLogy reduces the cost and

complexity of the process and enhances the

predictability of the process as well;

C) the preferred direction for both location and dispersion

jifferences on process aspects is clear and

undebatable, because of the familiarity of the process

aspects and the direct applicaoility of expected values

and varianc s in terms of average cost estimates and

tightness of cost estimates;

(a) "mental cohesiveness" (or conceptual integrity [3rooks

75, pp. 41-50]) is the key influence on the general

Quality of the product;

(e) a programming team is naturally burdened (relative to an

individual programmer) by the organizational overhead

and risk of error-prone misunderstanding inherent in

coordinating and interfacing the thoughts and efforts

o4 those on the tean;

(W) the disciplined methodoloy induces an effective mental

7 Q~h
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cohesiveness, endbling a programming team to behave

more like an individual programmer with respect to

conceptual control over the program, its design, its

structure, etc., because of the disc ipLine's

antiregressive, comolexity-controlling FBelaay and

Lehman 76, o. 245] effect that compensates for the

inherent organizational overhead of a team; and

( ) the oreferred direction for both Location and dispersion

oifferences on oroduct aspects is not always clear,

c ecause of the unfamiliarity of many of the product

aspects anu a 3eneral lack of understanding regarding

the implication of dispersion for product aspects.

In view of the general beliefs and basic suppositions

stateo above, each possiole comparison outcome (Cf. Figure

3) may be ."egaraed as "voting" either for or against a given

basic supposition (or as "abstaining"), depending on whether

that outcome would substantiate or contravene the

corresponding general beliefs. For process aspects,

(1) outcome DT < AI = AT obviously affirms the

suppos it ion;

(2) outcomes DT < Al < AT or DT < AT < Al, which are

completely aifferentiated variations of the

supposition's main theme, indirectly affirm the

suPposition, especially when DT < AI = AT is the

stron; er of the corresponding partially

differentiated outcome pair;

(3) outcome Al = AT = DT may negative the supposition,

or it may be considered an abstention for any one

of several reasons

(it is possible that (a) the asoect's

critical level is not low enough, so it

defaults to the null outcome; (b) the aspect

reflects something characteristic of the

acplication/task or another factor common to

1,
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d L i the jroups in the exL)eriment; or (c) the

aspect measures somethin fundamentaL to

software development phenomena in general ano

would aldays result in the null outcome); and

(4) all other outcomes -- Al < AT < DT, AI < DT < AT,

C DT < , AT C AI <T, AI A AT = DT

(AI < AT = DT, AT = DT < AI), AT AI DT

(AT < DT = Al, DT = Al < AT), and Al AT < T --

neaative the supoostion.

For oroduct aspects,

(1) outcomes AT t DT = AI (AT < DT = Al, DT = Al < AT)

obviously affirm the suppostion;

(2) outcomes Al < DT < AT or AT < DT < Al, which may oe

considered approximations to the supposition (DT

is distinct from AT but falls short of AI, Jue to

lack of experience or maturity in the disciplined

methodology), indirectly affirm the supposition,

esoecially when DT = Al < AT or AT < D- = Al

(respectively) is the stronger of the

corresponding oartially differentiated outcome

pair;

(3) outcome AI = AT = DT may negative the supposition,

or it may be considered an abstention for any one

of several reasors

(it is possible that (a) the aspect's

critical level is not low enough, so it

aefaults to the null outcome; (b) the aspect

reflects something characteristic of the

arplication/task or anotner f3ctor common to

all the groups in the experiment; (c) the

aspect measures something fundamental to

software development phenomena in general and

would always result in the null outcome; or

(d) several of the study's hit-and-miss

collection of exploratory Proauct aspects are
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Juds and vay be ignored as useless software

measures);

(4) outcomes AI < AT < DT, AT ( Al < DT, DT < Al < AT,

and DT < AT < Al negative the supposition;

(5) outcomes OT A AI = AT (DT < AI = AT, AI = AT < DT)

negative the suppostions, especially discreciting

the belief that "mental cohesiveness" is the key

influence on the product; and

(6) outcomes Al A AT = DT (AI < AT = PT, AT = DT < AI)

negative the Supposition, especially discrediting

the belief that discipline methodology effectively

molds a team into an individual.

Thus, interpreting the study's findings accordin to

the Dasic suppositions consists of assessing how well the

research conclusions have borne out the basic suppositions

and how well the experimental evidence substantiates the

cenerat beliefs. On the whole, the study's findings soundly

support the general beliefs ,resented aoove, although a few

conclusions exist that are inconsistent with the Dasic

suDpositions or difficult to allay individually.

Support for the general beliefs was relatively stronger

on process aspects than on product aspects, and in Location

conparisons rather than in dispersion comparisons.

Overwhelming support came in the category of Location

cotparisons on process aspects in which the research

conclusions are distinguished by extremely low critical

levels ano by near unanimity with the basic supposition. In

the category of dispersion comparisons on process aspects,

only two outcomes indicated any distinction among the

qroups: one aspect supported the study's general beliefs and

one aspect showed an explainable exception to them. Fairly

stronyj support also came in the category of location

co'mparisons on product aspects for which the only negative
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evidence (besides the neutrdl At = AT = DT conclusions)

a oearej in the form of several Al A AT = DT conclusions.

They inoicate some areas in .hich the disciplined

methodology was apparently ineffective in modifying a team's

behavior toward that of an individual, probably due to a

tack of fully developed training/experience with the

methocaology. Comparatively weaker support for the study's

beliefs was recordea in the category of dispersion

comparisons on product aspects. Although the basic

suopos-itions were borne out in a number of the conclusions,

tnere were also several distinctions of various forms whir."

contravene the basic suppositions.

Thus, according to this interpretation, the study's

findings strongly substantiate the claims that

(Cl) methodological discipline is the key influence on

the general efficiency of the software Oevelopment

process, and that

(CZ) the disciplined methodology significantly reduces

the material costs of software development.

The claims that

(C3) mental cohesiveness is the key influence on the

general quality of the software development

Proouctt that

(C4) relative to an individual, an ad hoc team is

mentally burdened by organizational overheau, and

that

(C S) the disciplined methodology offsets the mental

burden of organizational overhead and enables a

team to behave more Like an individual relative to

the software product,

are moderately substantiated by the study's findings, with

oarticularly mixed evidence for dispersion comparisons on

Pr3duct aspects.
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It shouto ue noted that there is a simpler, better-

suoported interpretive model for the location results alone.

With the beliefs that a Jisciplined methooology provioes for

the minimum process cost and results in a proouct which in

sone aspects approximates the product of an individual and

at worst approximates the product developed by an ad hoc

tea.i, the suppositions are DT < AIAT with respect to

process and Al S DT < AT or AT S DT < AI with respect to

product. The study's findings support these suppositions

without exception.

l irgina: 12 2 rg!E{&m~inA=.ecp~t Edatsification

It is desirable to examine the study's findings in view

of the way that higher-Level programming issues are

reflected among the individual programming aspects. For

this purpose, the aspects considered in this study were

grouped into (so-called) programming aspect classes. Each

class consists of aspects which are related by some common

feature (for example, all aspects relating to the programos

statements, statement tyoes, statement nesting, etc.), and

the classes are not necessarily disjoint (i.e., a given

asoect may be included in two or more classes). A unioue

higher-teveL programming issue (in the example, control

structure organization) is associated with each class.

The programming aspects of this study were organized

into a hierarchy of nine aspect classes (with about 10%

overlap overall), outlined as follows:
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!iher-tevet Pro~rammi ng tW:£.s_

Development Process Efficiency
Effort (Job Steps) . . . . . . . I
Errors (Program Chances) . . . . . . II

Final Product Guality
C ross Size . . . . . . .
Controt-Construct Structure . . • . . IV
Data Variable Organization . . .. . V
Modulari ty

Packaalng Structure . . . . . . VI
Invocation Organization ... . . VI

Inter-Segment Communication
via Parameters . . . . . . . VIII
Via Global Variables . . . . . . . IX

The individual aspects comprising each class, together with

the corresponding conclusions, are listed by classes in

Ta:les c.1 throuah 6.9. For each aspect class, it is

interesting to jointly interpret the inoividual outcomes in

an overall manner in order to see something of how these

higher-level issues are affected by team size and

-tetnodological discipline.

Class I: EffQCt (Joo Steos)

Within Class I (process aspects dealing with COMPUTER

J03 STEPS), there is strong evidence of an important

difference among the groups, in favor of the disciplined

methooology, with respect to average development costs. As

a class, these aspects directly reflect the frequency of

computer system activities (i.e., module compilations and

test program executions) during development. They are one

possible way of measuring machine costs, in units of oasic

activities rather than monetary charges. Assuming that each

cotputer system activity involves a certain expenditure of

the programmer's time and effort (e.g., effective terminal

coitact, test result evaluation), these aspects indirectly

reflect human costs of development (at least that portion

exclusive of design work).

The strength of the evidence supporting a difference

with respect to location comparisons within this class is
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haser. on both (a) tne near unanimity CS out of 9 aspects] of

the T < AI =  AT outcome ano (b) the very Low critical

Levels 1<.025 for 5 aspects] involved. Indeea, the single

exception among the Location comparisons (Al = AT = DT on

C34PUTER JOB STEPS\MODULE COMPILATIONS\IDENTICAL) is readily

exoLained as a direct consequence of the fact that all teams

made essentially similar usage (or nonuse, in this case,

since icenticaL compilations were not uncommon) of the on-

Line storage capability (for saving relocatabLe modules and

thus avoiding identical recompiLations). This was expected

since all teams had been provided with identical storage

ca:aoility. but without any training or urging to use it.

The conclusions on Location comparisons within this class

are interpreted as demonstratiny that

employment of the disciplined methodology by a

programming team reduces the average costs, ooth

machine and human, of software development, relative to

both individual programmers and programming teams not

employing the methodology.

Examination of the raw data scores themselves indicates the

m&gnitude of this reduction to be on the order of 2 to 1

(i.e., 50%) or better.

aith respect to disoersion comparisons within this

class, the evidence generally failed to make any

distinctions among the groups CAI = AT = DT on 7 out of 9

asoects], These null conclusions in dispersion comparisons

are interpreted as demonstrating that

variability of software development costs, especially

machine costst is relatively insensitive to programming

team size and degree of methodological discipline.
T he two exceCtions on individual process aspects deserve

mention. The COM PUTER JOB STEPS\MISCELLANEOUS aspect showed

a AT = DT < Al dispersion distinction among the groups,

reflecting the variaoility (as expected) of individual
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programmers relative to orogramming teams in the area of

buiLding on-Line tools to indirectly support software

deveLoprment (e..g., stand-alone module drivers, one-shot

auxiliary computations, tabLe generators, unanticipated

debugging stubs, etc.). The MAX UNIQUE COMPILATIONS F.A.O.

"ODULE aspect showed a DT < Al = AT dispersion distinction

arong the groups at an extremely Low critical level [<.0O53,

reflecting the Lower variation (increased orecictabitity) of

th- isciptined teams relative to the ao hoc teams and

individuals in terms of "worst case" compilation costs for

any one module. The additional Al < AT distinction for this

comPparison is attributaote to the fact that several teams in

graup AT built monolithic single-module systems, yielaing

rather inflated raw scores for this aspect.

Class 11: Errorj (Progran Changes)

qithin Class I (the process aspect PROGRAM CHANGES),

there is strong evidence of an important difference among

the groups, again in favor of the disciplined methodology,

witn respect to average number of errors encountered during

imolementation. Chapter V contains a detailed explanation

of now program changes are counted. This aspect directly

reflects the amount of textual revision to the source code

during (postdesign) development. Claiming that textual

revisions are generally necessitated by errors encountered

while nuilding, testing, and debugging software, independent

research [Dunsmore and Gannon 77) has demonstrateo a high

(rank order) correlation between total program changes (as

counted automatically according to a specific algorithm) and

total error occurrences (as tabulated manually from

exhaustive scrutiny of source code and test results) during

software implementation. This aspect is thus a reasonable

measure of the relative number of programming errors

encountered outside of design work. Assuming that each
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textual revision involves an expenoiture of programmer

effort (e.g., planning the revision, on-Line editing of

soirce code), this aspect inoirectty reflects the Level of

huian effort devoteu to implementation.

with respect to location comparison, the strength of

the evidence supporting a difference among the groups is

based on the very low critical level [<.0051 for the

DT < Al = AT outcome. The additional trend toward AI < AT

is much less pronounced in the data. The interpretation is

that

the disciplined methodology effectively reduced the

average number of errors encountered during software

implementat ion.

This was expected since the methodology purposely emphasizes

the criticality of the design phase and subjects the

software design (code) to thorough reading and review prior

to coding (key-in or testing), enhancing error detection and

correction prior to implementation (testing).

with respect to disoersion comparison, no distinction

among the groups was apparent, with the interpretation that

variability in the number of errors encountered auring

implementation was essentially uniform across all three

programming environments considered.

Class III: Groql _Sz

within CLass III (product aspects dealing with the

qross size of the software at various hierarchical levels),

there is evidence of certain consistent differences among

the groups with respect to both average size and variability

of size. As a cLass, these aspects directly reflect the
number of objects and the average number of component

(sub)objects per object, according to the hierarchical
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organization (imposed by the programming Language) of

sof tw re into objects such dS modules, segments, Jata

variautes, Lines, statements, and tokens.

,,ith respect to Location comparisons witnin this class,

the non-null conclusions [L7 out of 17 aspects] are nedrLy

unanimous C5 out of 7] in 'he AI < AT = DT outcome. The

interpretation is that individuals tend to produce software

which is smaLter (in certain ways) on the average than that

orDouceo by teams. It is unclear wnether such spareness of

exDression, primarily in segments, global variables, ano

formal parameters, is advantageous or not. The two non-null

exceptions to this Al < AT = DT trend deserve mention, since

the one is Only nominally eAceotional and actually

supportive of the tendency upon closer inspection, whiLe the

other indicates a size aspect in which the discipLineo

methooology enabled programming teams to break out of the

pattern of distinction from individual programmers. The

AT = DT < AI outcome on AVERAGE STATEMENTS PER SEGMENT is a

sirple conseduence of the outcome for the number of

STATEMENTS CAI = AT = DT] and the outcome for the numoer of

SESMENTS CAl < AT = DT) and it still fits the overall

oattern of At A AT = DT on location differences on size

asoects. On the LINES aspect, the DT = Al < AT distinction

breaks the pattern since DT is associated with AI and not

with AT. Since the number of statements was roughly the

sa-me for all three groups, this difference must be due

mainLy to the stylistic ianner of arranging the source code

(which was free-format with respect to Line boundaries), to

the amount o documentation comments within the source code,

and to the number of Lines taken up in data variable

declarations.

with respect to dispersion comparisons within this

class, the few aspects which do indicate any aistinction

11
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aman4 the groups [5 out of 17 aspects] seem to concur on the

Al = AT < DT outcome. This pattern, which associates

increased variation in certain size aspects with the

disciplined methodology, is somewhat surprising and tacks an

intuitive exolanation in terms of the experimental

tr.atments. The exception DT = Al < AT on AVERAGE SEGMENTS

PE? ',ODULE is really an exaggeration due to the fact uf

several AT teams implementing monolithic single-module

systems, as mentioned above. The exception AT < DT = Al on

STAT.:_ENTS is only a very slight trend, reflecting the fact

th3t the AT products rather consistently contained the

largest numbers of statements.

Oje overall observation for Class ill is that while

certain distinctions did consistently appear (especially for

location out also for dispersion comparisons) at.the middle

levels of the hierarchical scale (segments, data variibles,

lines, ano statements), no distinctions appeared at either

the highest (modules) or lowest (tokens) Levels of size.
The null conclusions for size in modules and average module

size seem attributaole to the fact that particular

programming tasks or application domains often have standard

designs at the topmost conceptual levels which strongly

influence the organization of software systems at this

highest level of gross size. In this case, the symOol-

ta le/scanning/parsing/code-generation design is extremely

cormon for language translation problems (i.e., compilers),

regaruless of the particular parsing technique or symrol

taoLe organization employed, and the moaules of nearly every

system in the study directly reflected this common design.

The null conclusions for size in tokens is interpretable in

vied of Halstead's software science concepts LHalsteaa 77),

accoroing to which the program length N is predictaole

from the number of basic input-output pdrameters T1 and

the language level X . Since the functional specification,

119
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3 lication area, and implementation Language were all fixed

in this study, uoth rl 2* and X shoulo be constant for

each of tne software systems, imolying virtually constant

crDrdm lengths N Since program length N can oe

re-:aroea as roughly equivalent to the numoer of tokens in a

proram, the study's oata seem to support the software

science concepts in this instance.

Ct3ss IV: coo!!rQ-SQI:ru_ ruIV!:t

aithin Class IV (proauct aspects dealinq with the

scft.ore's organization accoroing to statements, constructs,

and control structures), there are only a few distinctions

mnjJe oetween the groups.

with respect to location comparisons, the few [5 out of

24), aspects that Showed 3ny distinction at all were

unanimous in concluding DT = AI < AT. Essentially, three

particular issues were involved. The STATEMENT TYPE COUNTS\

IF, STATEMENT TYPE PERCENTAGES\IF, and DECISIONS aspects are

all related to the frequency of projrammer-coded decisions

in the software product. Their common outcome DT = Al < AT

is interpreted as demonstrating an important area in .hich

the cisciplined methodology causes a programming team to

behave like an individual programmer. The number of

decisions has been commonly accepted, and even formalized

[',cCaoe 76], as a measure of program complexity since more

decisions create more paths through the code. Thus, the

disci;LAined methodology effectively reduced the average

complexity from what it otherwise would have been. The

STATEMENT TYPE COUNTS\RETURN aspect indicates a difference

between the ad hoc teams and the other two groups. Since

the EXIT and RETUR% statements are restricted forms of

G&TOst this difference seems to hint at another area in

which the disciplined methodology improves conceptual

12-
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CHAPTER VIII

control over projram structure. The STATEMENT TYPE COUNTS\

(P4OC)CALL\INTRIrNSIC aspect also indicates a slight trend in

the area of the frequency of input-outout operations, which

seems interpretable only as a result of stylistic

differences.

with respect to disoersion comparisons, only two

'articular issues were involved. The STATEMENT TYPE COUNTS\

;ETURI, ano STATEMENT TYPE PEPCENTAGE\RETURN aspects both

indicated a strong DT = AI < AT difference, suggestin that

tne frequency of these restricted GOTOs is an area in which

the disciplined methodology reduces variability, causing a

programming team to beha.ve more like an individual

crorammer. The STATEMENT TYPE COUNTS\(PROC)CALL and

STATEMENT TYPE COUNTS\(PROC)CALL\NONINTRINSIC aspects both

showed a DT < AI = AT distinction among the groups, which is

dealt with more appropriateLy within Class V11 below.

In summary of Class IV, the interpretation is that the

functional component of control-construct organization is

largely unaffected oy team size and methodological

discipline, probably due to the overriding effect of

croject/task uniformity/commonality. However, two facets of

the control component that were influenced were the

frequency of decisions (especially IF statements) and the

frequency of restricted GOTOs (especially RETURN

st3tements). For these aspects, the disciplined methodology

seems to have altered the size of the program's control

structure (and reduced its complexity) from that of a team's

product to that of an individual's product.

Class V: 2a1a arAaolj tjzCa±.&jU2o2

within Class V (product aspects dealing with data

variaoles and their organization within the software), there

121J



TABLE 6

S4w I66

c . - 4 Of V N v 16 0 H W V 1 0 1 V I 1 1 # o *4M i f V 1 4 1

18 *- . . 0 9. u 6 N u I'.I " uo it N I - 6

4 W .4 6.-' AI I C 0 009

C; 46 1' CO c0 # 0 06 C

4- I: a No 00a0 i N is N 0 0 1N a V i6 N M of

a. 0: V I' v N 00 6 a v 0000 N 0 4 N I I$I *

4~~0.4 L

IQU 4S VI 445.6I WIII Vh.416 NV MM6664465r
o~i .-- 0 4

- 4~g4 6 N N I - N N I .

C 9 --- - N

oq a- at I

0 10 :;Peat W. N 4

-~~~~~w 4 ~ 0 J 6~0

020 400 0 0 ~ 6 afwa II 60.
* ECU 4 6 66 3

*C0. Z0. **...Or-. ..... .... ....

~~~~1 1- a



C riA P TE P VI i

are several distinctions among the groups, with an overall

treni for both the Location and dispersion comparisons.

,ata variable organization was, however, not emphasized in

the disciplined methooology, nor in the academic course

which the participants in group DT , ere taking. with

re ,ect to location comparisusq all aSPectS Shoting anY

distinction at all were unanimous in concluding

AI * AT = DT. The trend for indiviouals to differ from

te3ms, regardless of the disciplined methodology, appears

not only for the total rumber of data variaoles declareo,

tut also for data variables at each scope level (global,

parameter, local) in one fashion or another. The difference

regaraing formal parameters is especially prominent, since

it Shows up for their raw count frequency, their normalized

Dercentage frequency, and their average frequency oer

natural enclosure (segment). With respect to dispersion

comparisons, the apparent overall trend for aspects which

show a distinction is toward the Al = AT < DT outcome. No

particular interpretation in view of the experimental

treatments seems appropriate. Exceptions to this trend

apoeareo for both the raw count and percentage of call-by-

reference paramenters (both Al < AT = DT), as well as two

other aspects.

Ct3ss VI: Packaing Structure

aithin Class VI (product aspects dealing with

moJularity in terms of the packaging structure), there are

essentially no distinctions among the groups, except for two

location comparison issues. Most of the aspects in this

class are also members of Class 1i1 , Gross Size, but are

(re)considered here to focus attention upon the packaiing

chiracteristics of modularity (i.e., how the source code is

livided into modules and segnents, what type of segments,

etc.). The disciplined 'nethooology did not explicitly



TABLE 6

'A Is V I NO N I Ist I

.c-s c;o
404C I

40C* *. . . . . . .

soC 0 4 14 1
16 0 Is I 6 Is 6 4

* 1.1 64 II V III 1 1.0 II 1 UI Nh

owl4 S I -. MI :

- C C I -X 1 4V

, C 4 gO S I 4

6 4 I4 I I

99- 1- 3 I - I 4

469 1.4. I -- M I W 4

00 ; 4 . 0 O IOU "i'

*W161 46 5 60 I C

1 166 - 1 w m I I - $ 4

I. 4 I- I III W- C4
* lc .. J As I c

-~~~~~1 COUNMNhW2 ggS.~ C -C e I I I

29 =wn GW W- I2 -

.0 6 4 *4 I 4122a



CHAPTER VIII

include (nor did group DT's course work cover) concepts of

modularization or criteria for evaluating good modularity;

hence, no particular distinctions among the groups were

expected in this area (Classes VI and VII).

with respect to Location comparisons, the Al < AT = DT

outcome for the SEGMENTS aspects, along with the companion

outcome AT = DT < AI for the AVERAGE STATEMENTS PER SEGMENT

asoect (as explained under Class IIl above), indicates one

area of packaging that is apparently sensitive to team size.

Individual programmers built the system with fewer, but

larger (on the average), segments than either the ad hoc

teams or the disciplined teams. The AI < AT = DT outcome

for the AVERAGE NONGLOBAL VARIABLES PER SEGMENT\PARAMETER

asoect indicates that average "calling sequence" Length,

curiously enough, is another area of packaging sensitive to

team size. With respect to dispersion comparisons, there

really were no differences, since the single non-null

outcome for AVERAGE SEGMENTS PER MODULE is actually a fluke

(raw scores for AT are exaggerated by the several monolithic

systems) as explained above. T he overall interpretation for

this class is that

modularity, in the sense of packaging code into

segments and modules, is essentially unaffected by team

size or methodological discipline, except for a

tendency by individual programmers towaro fewer, Longer

sejments than programming teams.

CL3ss VII: LnvoCat. n QrCaniati2n

Within Class VII (product aspects dealing with

modularity in terms of the invocation structure), there are

two distinction trends for location comparisons, but no

clear pattern for the dispersion comparison conclusions.

This class consists of raw counts and average-per-segment

1Z3
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CHAPTER VIII

frequencies for invocations (procedure CALL statementb or

function references in expressions) and is considered

separately from the previous class since modularity involves

not only the manner in which the system is packaged, out

also the frequency with which the pieces might be invoked.

For tne raw count frequencies of calls to intrinsic

prDceoures and intrinsic routines, the trend is for the

inJivi-luals and disciplined teams to exhibit fewer calls

th3n the ad hoc teams. These intrinsic proceoures are

alvost exclusively the input-output operations of the

language, while the intrinsic functions are mainly data type

conversion routines. The second trend for Location

co-"parisons occurs for two aspects (a third aspect is

actually redundant) related to the average frequency of

calls to programmer-defined routines, in which the

individuals display higher average frequency than either

tyoe of team. This seems coupled with group AI's preference

for fewer but larger routines, as noted above. With respect

to dispersion comparisons, several distinctions appear

within this class, but no overall interpretation is reaoily

apoarent (except for a consistent reflection of a DT < Al

difference, with AT falling in between, leaning one side or

the other).

Class VIII: Y -Sa eot f~mUoi~tion via Para:!ernfrs

within CLass VIII (orocuct aspects dealing with inter-

segment communication via format parameters), there are only

a few distinctions among the groups. With respect to

location comparisons, the total frequency of parameters and

the average frequency of parameters per segment both show a

difference. The interpretation is that

the individual programmers teno to incorporate Less

inter-segment communication via parameters, on tne

average, than either the ao hoc or the disciplined

124
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CHAPTER VIII

programming teams.

witn respect to dispersion comparisons, in addition to the

difference in the raw count of parameters referred to in

Class V, there is a strong difference in the variability of

the number of caIl-oy-reference parameters, also apparent in

the percentages-by-type-of parameter aspects. The

interpretation is that

the individual programmers were more consistent as a

yroup in their use (in this case, avoidance) of

reference parameters than either type of programming

team.

CL3ss IA: 1n1L-feta Oten DIt £2uID2Q Iii 2 221k YitItI

within Class IX (product aspects dealing with inter-

segment communication via gLooal variables), there are

several differences among the groups, including two which

indicate the beneficial influence of the disciplined

methodology. This class is composed of aspects dealing with

absolute frequency of globals, average frequency of gLobaLs

Per module, segment-global usage pairs (frequency of access

paths from segments to gLobals), and segment-9lobal-segment

data bindings (frequency of communication oaths between

segments via global variables).

.ith respect to Location comparisons, there is the

Al < AT = DT distinction in sheer numbers of gLobats,

oarticularly gtobals which are modified during execution, as

noted in Class V. However, when averaged per module, there

apoears to be no distinction in the frequency of gLobats.

The Al < AT = DT difference in the number of possible

segment-gLobal access paths makes sense as the result of

group AI having both fewer segments and fewer gLobaLs. ALL

three groups had essentially similar average Levels of

actual segment-global access paths, but several differences

125
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a;oear in the relative percentage (actual-to-possible ratio)

cateJory. These three instances of AT < DT = Al differences

indicate that the degree of "globaLity" for global variables

was higher for the individuals and the disciplined teams

than for the ad hoc teams. Finally, another AT 0 DT = Al

difference appears for the frequency of possible se~ment-

gl:oat-segment jata oindings, indicating a positive effect

of the aisciplined methodology in reducing the possiole data

coupling among segments. It may be noted that these Last

two categories of aspects, segment-global usage relative

percentages and segment-global-segment oata bindings, also

reflect upon the quality of modularization, since gooo

modularity should promote the decree of "gtobality" for

globaLs and minimize the data coupling among segments. The

interpretation here is that

certain aspects of inter-segment communication via

Llobals seems to be positively influenced, on the

average, by the disciplined methodology.

with respect to dispersion comparisons, there is a

diversity of differences in this class, without any unifying

interpretation in terms of the experimental treatments.

The cyclomatic complexity and software science metrics,

wM3se results have not been integrated into the two

interpretive frameworks discussed aoove, aefinitely mcrit

sove interpretation.

On location comparisons, the results for cyclomatic

complexity measures exhibited a common underlying trend,

namely, DT < AT < aI. In fact, the non-null outcomes were

usually either AT = DT < Al or else DT < Al = AT. This says

that either the teams were differentiated from the
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inJivid.als or else the disciplined methodology was

differentiated from the ad hoc approach, depending on the

oarticular variation of cyclomatic complexity invotveu.

This corresponds well with the intuition that team

Droramming alone snoulo force a general reduction of

cyclomatic complexity for individual routines, and that use

of the disciplined methodology within team programminj

Sh~uld promote this effect even further. The observeo

results for the cycLoatic complexity metrics seem to

display this kind of behavior.

The generally weaker differentiation (i.e., larger

critical levels) observed for the cyclomatic complexity

asoects relative to other aspects considered in the study is

auite understandable in Light of the fact that all 19

systems were coded in a structured-programming Language

which greatly restricts ootentiat control flow patterns. We

wouli expect cyclomatic complexity metrics to be more useful

in the context of unrestrictive programming languages such

as Fortran.

The results for software science quantities are

safewhat disappointing: surprisingly few distinctions among

the 4roups were ootainea. On Location comparisons, only the

vocacutary and estimated length metrics (the latter is a

function solely of the former) yielded non-null conclusions.

Their Al < AT = DT outcome corresponds to that obtained for

the number of segments and data variables, both of which

c otribute heavily to the number of "operator/operands."

The overall interpretation here is that the software science

metrics appear to be insensitive to differences in how

so'tware is developed. "aybe these measures, with their

actuaridl nature, are sensitive only to gross factors in

software development (e.g.t project, application area,

imolementation Language), all of which were held constant in

127
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th is e xper ime nt.
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CHAPTER IX

A practical methodology was designed and developed for

exoerimentally and quantitatively investigating software

develooment onenomena. It was employed to compare three

oarticuLar software development environments and to evaluate

the relative impact of a particular disciplined methodology

(maje up of so-called modern programming practices). The

exoeriments were successful in measuring differences among

orogrdmming environments ano the results support the claim

that disciplined methodology effectively improves botn the

orocess and product of software development.

One way to substantiate the claim for improved process

is to measure the effectiveness of the particular

programming methodology via the number of bugs initially in

the system (i.e., in the initial source code) and the amount

of effort required to re-nove them. (This criteria has been

suggested independently oy Professor M. Shooman of

Polytechnic Institute of New York [Shooman 7,3).) Altnough

neither of these measures was directly computed, they are

ea:n closely associated with one of the process asoects

considered in the study: PROGRAM CHANGES and COMPUTER JOB

STEPS\ESSENTIAL, resoectively. The location comparison

st3tistical conclusions for both these aspects affirmed

T < Al = AT outcomes at very low (<.01) significance

levels, indicating that on the average the disciptined teams

mehsurea Lower than either the ad hoc individuals or the ad

hoc teams which botn measured about the same. Thus, the

Pvidence collected in this study strongly confirms the

effectiveness of the disciplined methodology in building

retiaole software efficiently.

The second claims that the product of a disciplined
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te3m should closely reseflu e that of a single individual

since the aisciplined methodology assures a semblance of

conceptual inteyrity within a programming team, was

partially substantiateo. In many product aspects the

products developea using the jisciolineo methodology were

either similar to or tended toward the products developed by

the individuals. In no case did any of the measures show

the oiscipLined teams' products to ce worse than those

developed by the ad hoc teams. It is felt that the

suoerticiality of most of the product measures was chiefly

responsible for the Lack of stronger support for this second

cl3im. Tne need for product measures with increased

sensitivity to critical characteristics of sottware is very

clear.

The results of these experiments will be used to guide

further experiments and will act as a basis for analysis of

software development products and processes in the Software

En;ineering Laboratory at NASA's Goddaro Space Flight Center

[3asiLi et at. 77]. The intention is to pursue this type of

emoiricaL research, especially extending the study to more

soohisticated and Promising software metrics.
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